Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.1.14

Separation of Cd(II) from Aqueous Solutions by A New Consecutive Process Consisting of Supported Liquid Membrane and Electrodialysis  

Altin, Sureyya (Bulent Ecevit University, Department of Environmental Engineering)
Altin, Ahmet (Bulent Ecevit University, Department of Environmental Engineering)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.1, 2019 , pp. 14-21 More about this Journal
Abstract
Supported liquid membrane process usually is used for recovering or enrichment of valuable metals in the industrial wastewater. But, even if the metals in the wastewater was separated with high chemical selectivity, it cannot be enough concentrated since separation performance of supported liquid membrane (SLM) process is limited by concentration gradient between feed solution and stripping solution. If metal concentration in the stripping solution to be enough low, transport of metal through membrane can be accomplishment constantly. Therefore, Electrodialysis (ED) has been placed after SLM process and the stripping solution of SLM was used as the feed solution for the ED process. Transport of ions in the solutions is successfully performed by ED process. Thus, the metal concentration in the stripping solution does not rise as to stop ion transport. Besides, valuable metals easily are concentrated by ED process for re-use. In this study, effects of operation parameters like initial Cd(II) concentration, HCl concentration in the feed solution of SLM and applied voltage are investigated on separation efficiency, flux and permeability of the both processes. As the feed solution concentration increased, all performance values has increased. When initial concentration of 100 mg/L is used, separation performances (SP) are 55% and 70%, for SLM and consecutive process, respectively. The best HCl concentration in the feed solution of SLM has determined as 2 M, in this conditions SP are 64% and 72%, for SLM and consecutive process, respectively. With increased of applied voltage on ED process, SP of the consecutive process has been raised from 72% to 83%. According to the obtained experimental data, consecutive process has better separation performance than SLM. When the separation performances of both processes were compared for the same operating conditions, it was determined higher the separation efficiency, permeability and flux values of the consecutive process, 8%, 9% and %10.6, respectively. Consequently, the use of the consecutive process increases the performance efficiency of both processes. The consecutive process studied has quite a good chemical separation efficiency, and enrichment capability. Moreover, this process requires few water and energy.
Keywords
Metal separation; Electrodialysis; Supported liquid membrane; Consecutive process; Cadmium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Annane, A. Sahmoune, P. Montels, S. Tingry, Chem. Eng. Res. and Des., 2015, 94, 605-610.   DOI
2 B.A. Purin, Electrochemical extraction as the method of the purification of metals using liquid membranes, Izvestia AN LatvSSR., 1971.
3 I. Bustero, Y. Cheng, J.C. Mugica, T. Fernandez-Otero, A.F. Silva, D.J. Schiffrin, Electrochim. Acta, 1998, 44(1), 29-38.   DOI
4 F. Juarez-Islas, F. Carrillo-Romo, G. Roman-Moguel, Can. Metall. Q., 1999, 38(3), 187-192.   DOI
5 Y. Kim, S.W. Walker, D.F. Lawler, Water Research, 2012, 46(7), 2042-2056.   DOI
6 G.R.M. Breembroek, G.J. Witkamp, G.M. Van Rosmalen, J. Membr. Sci., 1998, 147(2), 195-206.   DOI
7 F. Habashi, Handbook of extractive metallurgy. Vol. III:Precious metals, refractory metals, scattered metals, radioactive metals, rare earth metals. Wiley-VCH, New York, 1997.
8 J. De Zuane, Handbook of Drinking Water Quality Standards and Controls. Van Nostrand Reinhold, New York, 1990.
9 H.R. Mortaheb, H. Kosuge, B. Mokhtarani, M. H. Amini, H. R. Banihashemi, J. Hazard. Mater., 2009, 165(1-3), 630-636.   DOI
10 P.K. Parhi, N.N. Das, K. Sarangi, J. Hazard. Mater., 2009, 172(2-3), 773-779.   DOI
11 G. Lee, Desalin. Water Treat., 2011, 35(1-3), 150-157.   DOI
12 H.A. Aziz, N. Otham, M.S. Yusuff, D.R.H. Basri, F.A.H. Ashaari, M.N. Adlan, F. Otham, M. Johari, M. Perwira, Environ. Int., 2001, 26(5-6), 395-399.   DOI
13 S. Yalcin, R. Apak, J. Hizal, H. Afsar, Sep. Sci. Technol., 2001, 36(10), 2181-2196.   DOI
14 K. Kadirvelu, C. Faur-Brasquet, P. Le Cloirec, Langmuir, 2000, 16(22), 8404-8409.   DOI
15 S. Frioui, R. Oumeddour, S. Lacour, Separ. Sci. Technol., 2017, 174, 264-274.
16 M. Alonso, A. Lopez-Delgado, A.M. Sastre, F.J. Alguacil, Chem. Eng. J., 2006, 118(3), 213-219.   DOI
17 M.R. Yaftian, A.A. Zamani, M. Parinejad, Separ. Sci. Technol., 2005, 40(13), 2709-2719.   DOI
18 C.V. Gherasim, J. Krivcik, P. Mikulasek, Chem. Eng. J., 2014, 256, 324-234.   DOI
19 S. Azzoug, O. Arous, H. J. Kerdjoudj, Env. Chem. Eng., 2014, 2, 154-162.   DOI
20 N.S. Rathore, A. Leopold, A.K. Pabby, A. Fortuny, M.T. Coll, A.M. Sastre, Hydrometallurgy, 2009, 96(1-2), 81-87.   DOI
21 D. He, M. Ma, Z. J. Zhao, Membr. Sci., 2000, 169, 53-59.   DOI
22 L. Marder, A.M.Z. Bernardes, Sep.Purif. Technol., 2004, 37(3), 247-255.   DOI
23 C. Singaravadivela, M. Vanithab, N. Balasubramanianb, J. Electrochem. Sci. Technol., 2012, 3(1), 44-49.   DOI
24 A. Thamilselvan, A. S. Nesaraj, M. Noel, E.J. James, J. Electrochem. Sci. Technol. 2015, 6(4), 139-145.   DOI
25 S. Altin, S. Alemdar, A. Altin, Y. Yildirim, Sep. Sci. and Techn., 2011, 46(5), 754-764.   DOI
26 A. Abou-Shady, C. Peng, O.J. Almeria, H. Xu, Desalination, 2012, 285, 46-53.   DOI
27 C. Peng, L. Yanyan, B. Jingjing, X. Huizhen, A. J. Abou-Shady, Hazard. Mater., 2011, 189, 814-820.   DOI
28 S.K. Thampy, P.K. Narayanan, D.K. Chauhan, J.J. Trivedi, V.K. Indusekhar, T. Ramasamy, B.G.S. Prasad and J.R. Rao, Sep. Sci. Technol., 1995, 30(19), 3715-3722.   DOI
29 C. Fontas, N. Pont, M. Hidalgo, V. Salvado, Desalination, 2006, 200(1-3), 114-116.   DOI
30 H.J. Lee, J.H. Song, S.H. Moon, Desalination, 2013, 314, 43-49.   DOI
31 H.G. Nowier, N. El-Said, H.F. Aly, J. Membr. Sci., 2000, 177(1-2), 41-47.   DOI
32 H. Strathmann, Separ. Purif. Methods, 1985, 14(1), 41-66.   DOI
33 B. Zhang, G. Gozzelino, Coll. Surfaces A: Phsicochem. Eng. Aspects, 2003, 215, 67-76.   DOI
34 L. Boyadzhiev, Z. Lazarova, in: Noble, R.D. and Stern, S.A.(Eds.), Liquid membranes (Liquid Pertraction) in Membrane Separations Technology, Principles and Applications, Elsevier, 1995.
35 F.J. Alguacil, H. Tayibi, Desalination, 2005, 180(1-3), 181-187.   DOI
36 M. Peydayesh, G.R. Esfandyari, T. ,Mohammadi, E.K. Alamdari, Chemical Papers, 2013, 64, 389-397.