A Study on the Mass Transfer and Metal Extraction by use of Hydrophobic Membrane

소수성막을 이용한 금속추출 및 물질전달에 관한 연구

  • Lee, Ryong-Jin (Department of Chemical Engineering, Dong-A University) ;
  • Kim, Young-Il (Department of Chemical Engineering, Dong Seo University) ;
  • Park, Dong-Won (Department of Chemical Engineering, Dong-A University)
  • 이용진 (동아대학교 화학공학과) ;
  • 김영일 (동서대학교 화학공학과) ;
  • 박동원 (동아대학교 화학공학과)
  • Received : 1998.06.23
  • Accepted : 1998.08.31
  • Published : 1998.12.10

Abstract

It was investigated that the extraction of Cr(VI) from aqueous solution into the organic TDA and the stripping(back extraction) of Cr(VI) from the Cr(VI)-TDA complex into NaOH aqueous solution by hydrophobic hollow fiber membrane. It was found that the mass transfer rates of stripping process were smaller than those of the extraction process. This result was expected that membrane resistance, neglected in the extraction process, acts on the stripping process when organic phase flow in the tube side of the hydrophobic membrane. Hollow fiber modules were made by potting the desired number(60, 100, 150, 300fibers). We also examined the effect of flow rates of aqueous and organic phase on the mass transfer rate in the membrane modules. From these experiments, we identified for the extraction process by using hydrophobic membrane, the effect of flow rate of aqueous phase on the mass transfer rate was significant, but that of organic phase was negligible one. In the stripping process, however, mass transfer rate depend neither flow rate of aqueous(stripping solution) phase nor that of organic(Cr-TDA complex) phase.

소수성실관막을 이용하여 수용액 중의 Cr(VI)을 TDA로 추출하고, 이를 NaOH 수용액으로 회수하였다. 역추출공정에서의 물질전달속도는 추출공정에 비해 작았으며, 이러한 결과는 소수성막의 내부를 유기상이 흐르게 되면 추출과정에서는 무시할 수 있었던 막저항이 작용하기 때문이라 판단된다. 막수량을 달리한 4개의 막모듈(60, 100, 150, 300가닥)을 제작하였으며, 각 모듈에 대해 수용상 및 유기상의 유량이 물질전달속도에 미치는 영향에 대해서도 검토하였다. 이 실험으로부터 소수성막을 이용한 추출공정에서는, 막내부를 흐르는 수용상의 유량이 물질전달속도에 큰 영향을 주었으나 유기상 유량의 영향은 미약하다는 것을 알 수 있었다. 반면, 역추출공정에서의 물질전달속도는 수용상(회수액)유량에도 유기상(Cr-TDA 착화합물)의 유량에도 영향을 받지 않음을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. 膜の化學 妹尾學
  2. Chem. Eng. Progr. v.85 R. W. Spillman
  3. Solv. Extr. Ion Exch v.10 R. Basu;K. K. Sirkar
  4. Sep. Sci. Technol. v.27 D. Takigawa
  5. J. memb. Sci. v.132 T. Hori;M. Hashino;A. Omori;T. Matsuda;K. Takasa;K. Watanabe
  6. J. Memb. Sci. v.135 no.2 Y. H. Wan;X. D. Wang;X. J. Zhang
  7. J. Memb. Sci. v.129 no.1 E. Klein;D. Yeager;R. Seshadri;U. Baurmeister
  8. Chem. Eng. Research & Design v.75 no.A4 S. Q. Xiao;K. Li
  9. Ind. Aliment. Agric v.108 V. N. Golubev;S. Benamara
  10. J. Biomech Eng. v.112 M. R. Pillarella;A. L. Zydney
  11. Sep. Sci. Technol v.25 J. Lamb;R. Bruening;D. Linsley;C. Smith;R. Izatt
  12. AIChE J. v.34 A. Sengupta;R. Basu;K. Sirkar
  13. Solv. Ext. and Ion Exch v.8 R. Charizia;E. Horwitz
  14. Sep. Sci. Technol. v.27 Z. Lazarova;L. Boyadzhiev
  15. Solv. Ext. and Ion Exch v.4 no.5 T. Sato;H. Watanabe;H. Suzuki
  16. 日本化學工學論文集 v.14 no.3 K. Ando;S. Masaoka;M. Akiyoshi;E. Obata
  17. AIChE v.37 R. Basu;K. K. Sirkar
  18. Ind. Eng. Chem. Res. v.36 A. Nanoti;S. K. Ganguly;A. N. Goswami;B. S. Rawat
  19. J. Memb. Sci. v.98 no.1 S. Elmore;G. G. Lipscomb
  20. 化學工學の進步 v.25 分離工學 駒澤勳
  21. J. Memb. Sci. v.29 N. D. D'Elia;L. Dahuron;E. L. Cussler
  22. J. Memb. Sci. v.20 P. R. Danesi
  23. J. Memb. Sci. v.26 R. Prasad;A. Kiani;R. R. Bhave;K. K. Sirkar
  24. J. Memb. Sci. v.35 P. R. Alexander;R. Callahan
  25. Ind. Eng. Chem v.28 E. N. Sieder;G. E. Tate
  26. AIChE J. v.34 L. Dahuron;E. L. Cussler