• 제목/요약/키워드: Stress signaling

검색결과 585건 처리시간 0.025초

Src Protein Tyrosine Kinases in Stress Responses

  • Grishin, Anatoly;Corey, Seth J.
    • Animal cells and systems
    • /
    • 제6권1호
    • /
    • pp.1-12
    • /
    • 2002
  • A role of Src family protein Tyrosine kinases (SFK) as mediators of receptor-ligand initiated responses is well established. Well documented, but less well understood is the role of SFK in cellular reaction to stresses. Evidence from the wide variety of experimental systems indicates that SFK mediate responses to all major classes of stress, including oxidation, DNA damage, mechanical impacts, and protein denaturing. SFK may be activated by stresses directly or via regulatory circuits whose identity is not yet fully understood. Depending on the cell type and the nature of activating stimulus, SFK may activate known downstream signaling cascades leading to cell survival, proliferation, cytoskeletal rearrangement, and apoptosis; the identity of these cascades is discussed. As in the case of receptor-initiated signaling, roles of individual SFK in various stress response may be redundant or non-redundant. Although signals generated by different stresses are generally transduced via distinct SFK pathways, these pathways may overlap or exhibit crosstalk. In some cell types stress-induced activation of SFK promotes survival and inhibits apoptosis, whereas the opposite may be true for other cell types. Stress responses constitute a new and rapidly developing area of SFK-mediated signaling.

Gene Expression Profiling of the Habenula in Rats Exposed to Chronic Restraint Stress

  • Yoo, Hyeijung;Kim, Hyun Jung;Yang, Soo Hyun;Son, Gi Hoon;Gim, Jeong-An;Lee, Hyun Woo;Kim, Hyun
    • Molecules and Cells
    • /
    • 제45권5호
    • /
    • pp.306-316
    • /
    • 2022
  • Chronic stress contributes to the risk of developing depression; the habenula, a nucleus in epithalamus, is associated with many neuropsychiatric disorders. Using genome-wide gene expression analysis, we analyzed the transcriptome of the habenula in rats exposed to chronic restraint stress for 14 days. We identified 379 differentially expressed genes (DEGs) that were affected by chronic stress. These genes were enriched in neuroactive ligand-receptor interaction, the cAMP (cyclic adenosine monophosphate) signaling pathway, circadian entrainment, and synaptic signaling from the Kyoto Encyclopedia of Genes and Genomes pathway analysis and responded to corticosteroids, positive regulation of lipid transport, anterograde trans-synaptic signaling, and chemical synapse transmission from the Gene Ontology analysis. Based on protein-protein interaction network analysis of the DEGs, we identified neuroactive ligand-receptor interactions, circadian entrainment, and cholinergic synapse-related subclusters. Additionally, cell type and habenular regional expression of DEGs, evaluated using a recently published single-cell RNA sequencing study (GSE137478), strongly suggest that DEGs related to neuroactive ligand-receptor interaction and trans-synaptic signaling are highly enriched in medial habenular neurons. Taken together, our findings provide a valuable set of molecular targets that may play important roles in mediating the habenular response to stress and the onset of chronic stress-induced depressive behaviors.

Repeated restraint stress promotes hippocampal neuronal cell ciliogenesis and proliferation in mice

  • Lee, Kyounghye;Ko, Hyuk Wan
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.203-210
    • /
    • 2018
  • Stress severely disturbs physiological and mental homeostasis which includes adult neurogenesis in hippocampus. Neurogenesis in hippocampus is a key feature to adapt to environmental changes and highly regulated by multiple cellular signaling pathways. The primary cilium is a cellular organelle, which acts as a signaling center during development and neurogenesis in adult mice. However, it is not clear how the primary cilia are involved in the process of restraint (RST) stress response. Using a mouse model, we examined the role of primary cilia in repeated and acute RST stress response. Interestingly, RST stress increased the number of ciliated cells in the adult hippocampal dentate gyrus (DG). In our RST model, cell proliferation in the DG also increased in a time-dependent manner. Moreover, the analysis of ciliated cells in the hippocampal DG with cell type markers indicated that cells that were ciliated in response to acute RST stress are neurons. Taken together, these findings suggest that RST stress response is closely associated with an increase in the number of ciliated neurons and leads to an increase in cell proliferation.

마늘추출물이 운동부하 흰쥐의 심장내 MAPK signaling 활성에 미치는 영향 (Effect of Garlic Extract on the Activation Pattern of MAPK Signaling in the Rat Heart After a Bout Exercise)

  • 이준혁;정경태;이용태;최영현;최병태
    • 동의생리병리학회지
    • /
    • 제22권5호
    • /
    • pp.1299-1303
    • /
    • 2008
  • Since exercise training induces mechanical stress to the heart, we examined the activation pattern of mitogen-activated protein kinase(MAPK)s signaling pathway by immunohistochemistry. The immunoreactions of MAPKs signaling with c-fos and Schiff's reaction were increased in the cardiac muscle of exercised rat compared to normal one except immunoreaction for MEK1/2 and ERK1/2 and p38. However, the immunoreaction of phospho-JNK and phospho-p38 with early gene c-fos were arrested markedly in water extract of Alliium sativum (WEAS) treated rat compared to exercised one. Since MAPKs signaling does play a protective role in response to pathological stimulus in the heart, results in the present study suggest that WEAS may act as a alleviating agent for exercise-induced stress to. heart through regulating MAPKs signaling activation.

Roles of Endoplasmic Reticulum Stress in Immune Responses

  • So, Jae-Seon
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.705-716
    • /
    • 2018
  • The endoplasmic reticulum (ER) is a critical organelle for protein synthesis, folding and modification, and lipid synthesis and calcium storage. Dysregulation of ER functions leads to the accumulation of misfolded- or unfolded-protein in the ER lumen, and this triggers the unfolded protein response (UPR), which restores ER homeostasis. The UPR is characterized by three distinct downstream signaling pathways that promote cell survival or apoptosis depending on the stressor, the intensity and duration of ER stress, and the cell type. Mammalian cells express the UPR transducers IRE1, PERK, and ATF6, which control transcriptional and translational responses to ER stress. Direct links between ER stress and immune responses are also evident, but the mechanisms by which UPR signaling cascades are coordinated with immunity remain unclear. This review discusses recent investigations of the roles of ER stress in immune responses that lead to differentiation, maturation, and cytokine expression in immune cells. Further understanding of how ER stress contributes to the pathogenesis of immune disorders will facilitate the development of novel therapies that target UPR pathways.

Oxidative Stress and Antioxidants in Disease and Cancer: A Review

  • Gupta, Rakesh Kumar;Patel, Amit Kumar;Shah, Niranjan;Choudhary, Arun Kumar;Jha, Uday Kant;Yadav, Uday Chandra;Gupta, Pavan Kumar;Pakuwal, Uttam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4405-4409
    • /
    • 2014
  • Reactive oxygen species (ROS), highly reactive molecules, are produced by living organisms as a result of normal cellular metabolism and environmental factors, and can damage nucleic acids and proteins, thereby altering their functions. The human body has several mechanisms to counteract oxidative stress by producing antioxidants. A shift in the balance between oxidants and antioxidants in favor of oxidants is termed as "oxidative stress". Paradoxically, there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases and PI3 kinase), ROS homeostasis, and antioxidant gene regulation (Ref-1 and Nrf-2). This review also deals with classification as well as mechanisms of formation of free radicals, examining their beneficial and deleterious effects on cellular activities and focusing on the potential role of antioxidants in preventing and repairing damage caused by oxidative stress. A discussion of the role of phytochemical antioxidants in oxidative stress, disease and the epigenome is included.

Cytoprotective Effect of Taurine against Hydrogen Peroxide-Induced Oxidative Stress in UMR-106 Cells through the Wnt/β-Catenin Signaling Pathway

  • Lou, Jing;Han, Donghe;Yu, Huihui;Yu, Guang;Jin, Meihua;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • 제26권6호
    • /
    • pp.584-590
    • /
    • 2018
  • Osteoporosis development is closely associated with oxidative stress and reactive oxygen species (ROS). Taurine has potential antioxidant effects, but its role in osteoblasts is not clearly understood. The aim of this study was to determine the protective effects and mechanisms of actions of taurine on hydrogen peroxide ($H_2O_2$)-induced oxidative stress in osteoblast cells. UMR-106 cells were treated with taurine prior to $H_2O_2$ exposure. After treatment, cell viability, apoptosis, intracellular ROS production, malondialdehyde content, and alkaline phosphate (ALP) activity were measured. We also investigated the protein levels of ${\beta}-catenin$, ERK, CHOP and NF-E2-related factor 2 (Nrf2) along with the mRNA levels of Nrf2 downstream antioxidants. The results showed that pretreatment of taurine could reverse the inhibition of cell viability and suppress the induced apoptosis in a dose-dependent manner: taurine significantly reduced $H_2O_2$-induced oxidative damage and expression of CHOP, while it induced protein expression of Nrf2 and ${\beta}-catenin$ and activated ERK phosphorylation. DKK1, a Wnt/${\beta}-catenin$ signaling inhibitor, significantly suppressed the taurine-induced Nrf2 signaling pathway and increased CHOP. Activation of ERK signaling mediated by taurine in the presence of $H_2O_2$ was significantly inhibited by DKK1. These data demonstrated that taurine protects osteoblast cells against oxidative damage via Wnt/${\beta}-catenin$-mediated activation of the ERK signaling pathway.

Can antioxidants be effective therapeutics for type 2 diabetes?

  • Park, Soyoung;Park, So-Young
    • Journal of Yeungnam Medical Science
    • /
    • 제38권2호
    • /
    • pp.83-94
    • /
    • 2021
  • The global obesity epidemic and the growing elderly population largely contribute to the increasing incidence of type 2 diabetes. Insulin resistance acts as a critical link between the present obesity pandemic and type 2 diabetes. Naturally occurring reactive oxygen species (ROS) regulate intracellular signaling and are kept in balance by the antioxidant system. However, the imbalance between ROS production and antioxidant capacity causes ROS accumulation and induces oxidative stress. Oxidative stress interrupts insulin-mediated intracellular signaling pathways, as supported by studies involving genetic modification of antioxidant enzymes in experimental rodents. In addition, a close association between oxidative stress and insulin resistance has been reported in numerous human studies. However, the controversial results with the use of antioxidants in type 2 diabetes raise the question of whether oxidative stress plays a critical role in insulin resistance. In this review article, we discuss the relevance of oxidative stress to insulin resistance based on genetically modified animal models and human trials.

Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression

  • Wang, Guoli;An, Tianyue;Lei, Cong;Zhu, Xiaofeng;Yang, Li;Zhang, Lianxue;Zhang, Ronghua
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.376-386
    • /
    • 2022
  • Background: Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) plays a critical role in the pathogenesis of depression by modulating synaptic structural remodeling and functional transmission. Previously, we have demonstrated that the ginsenoside Rb1 (Rb1) presents a novel antidepressant-like effect via BDNF-TrkB signaling in the hippocampus of chronic unpredictable mild stress (CUMS)-exposed mice. However, the underlying mechanism through which Rb1 counteracts stress-induced aberrant hippocampal synaptic plasticity via BDNF-TrkB signaling remains elusive. Methods: We focused on hippocampal microRNAs (miRNAs) that could directly bind to BDNF and are regulated by Rb1 to explore the possible synaptic plasticity-dependent mechanism of Rb1, which affords protection against CUMS-induced depression-like effects. Results: Herein, we observed that brain-specific miRNA-134 (miR-134) could directly bind to BDNF 30 UTR and was markedly downregulated by Rb1 in the hippocampus of CUMS-exposed mice. Furthermore, the hippocampus-targeted miR-134 overexpression substantially blocked the antidepressant-like effects of Rb1 during behavioral tests, attenuating the effects on neuronal nuclei-immunoreactive neurons, the density of dendritic spines, synaptic ultrastructure, long-term potentiation, and expression of synapse-associated proteins and BDNF-TrkB signaling proteins in the hippocampus of CUMS-exposed mice. Conclusion: These data provide strong evidence that Rb1 rescued CUMS-induced depression-like effects by modulating hippocampal synaptic plasticity via the miR-134-mediated BDNF signaling pathway.

Dust particles-induced intracellular Ca2+ signaling and reactive oxygen species in lung fibroblast cell line MRC5

  • Lee, Dong Un;Ji, Min Jeong;Kang, Jung Yun;Kyung, Sun Young;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권3호
    • /
    • pp.327-334
    • /
    • 2017
  • Epidemiologic interest in particulate matter (PM) is growing particularly because of its impact of respiratory health. It has been elucidated that PM evoked inflammatory signal in pulmonary epithelia. However, it has not been established $Ca^{2+}$ signaling mechanisms involved in acute PM-derived signaling in pulmonary fibroblasts. In the present study, we explored dust particles PM modulated intracellular $Ca^{2+}$ signaling and sought to provide a therapeutic strategy by antagonizing PM-induced intracellular $Ca^{2+}$ signaling in human lung fibroblasts MRC5 cells. We demonstrated that PM10, less than $10{\mu}m$, induced intracellular $Ca^{2+}$ signaling, which was mediated by extracellular $Ca^{2+}$. The PM10-mediated intracellular $Ca^{2+}$ signaling was attenuated by antioxidants, phospholipase blockers, polyADPR polymerase 1 inhibitor, and transient receptor potential melastatin 2 (TRPM2) inhibitors. In addition, PM-mediated increases in reactive oxygen species were attenuated by TRPM2 blockers, clotrimazole (CLZ) and N-(p-amylcinnamoyl) anthranilic acid (ACA). Our results showed that PM10 enhanced reactive oxygen species signal by measuring DCF fluorescence and the DCF signal attenuated by both TRPM2 blockers CLZ and ACA. Here, we suggest functional inhibition of TRPM2 channels as a potential therapeutic strategy for modulation of dust particle-mediated signaling and oxidative stress accompanying lung diseases.