Browse > Article
http://dx.doi.org/10.14348/molcells.2022.2257

Gene Expression Profiling of the Habenula in Rats Exposed to Chronic Restraint Stress  

Yoo, Hyeijung (Department of Anatomy, College of Medicine, Korea University)
Kim, Hyun Jung (Department of Anatomy, College of Medicine, Korea University)
Yang, Soo Hyun (Department of Anatomy, College of Medicine, Korea University)
Son, Gi Hoon (Department of Legal Medicine, College of Medicine, Korea University)
Gim, Jeong-An (Medical Science Research Center, College of Medicine, Korea University)
Lee, Hyun Woo (Department of Anatomy, College of Medicine, Korea University)
Kim, Hyun (Department of Anatomy, College of Medicine, Korea University)
Abstract
Chronic stress contributes to the risk of developing depression; the habenula, a nucleus in epithalamus, is associated with many neuropsychiatric disorders. Using genome-wide gene expression analysis, we analyzed the transcriptome of the habenula in rats exposed to chronic restraint stress for 14 days. We identified 379 differentially expressed genes (DEGs) that were affected by chronic stress. These genes were enriched in neuroactive ligand-receptor interaction, the cAMP (cyclic adenosine monophosphate) signaling pathway, circadian entrainment, and synaptic signaling from the Kyoto Encyclopedia of Genes and Genomes pathway analysis and responded to corticosteroids, positive regulation of lipid transport, anterograde trans-synaptic signaling, and chemical synapse transmission from the Gene Ontology analysis. Based on protein-protein interaction network analysis of the DEGs, we identified neuroactive ligand-receptor interactions, circadian entrainment, and cholinergic synapse-related subclusters. Additionally, cell type and habenular regional expression of DEGs, evaluated using a recently published single-cell RNA sequencing study (GSE137478), strongly suggest that DEGs related to neuroactive ligand-receptor interaction and trans-synaptic signaling are highly enriched in medial habenular neurons. Taken together, our findings provide a valuable set of molecular targets that may play important roles in mediating the habenular response to stress and the onset of chronic stress-induced depressive behaviors.
Keywords
chronic restraint stress; depression; gene enrichment analysis; gene expression profiling; habenula;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim, S.M., Cho, S.Y., Kim, M.W., Roh, S.R., Shin, H.S., Suh, Y.H., Geum, D., and Lee, M.A. (2020). Genome-wide analysis identifies NURR1-controlled network of new synapse formation and cell cycle arrest in human neural stem cells. Mol. Cells 43, 551-571.   DOI
2 Morris, J.H., Kuchinsky, A., Ferrin, T.E., and Pico, A.R. (2014). enhancedGraphics: a Cytoscape app for enhanced node graphics. F1000Res. 3, 147.   DOI
3 Quina, L.A., Wang, S., Ng, L., and Turner, E.E. (2009). Brn3a and Nurr1 mediate a gene regulatory pathway for habenula development. J. Neurosci. 29, 14309-14322.   DOI
4 Xu, P., Wang, K., Lu, C., Dong, L., Chen, Y., Wang, Q., Shi, Z., Yang, Y., Chen, S., and Liu, X. (2017). Effects of the chronic restraint stress induced depression on reward-related learning in rats. Behav. Brain Res. 321, 185-192.   DOI
5 Aizawa, H., Kobayashi, M., Tanaka, S., Fukai, T., and Okamoto, H. (2012). Molecular characterization of the subnuclei in rat habenula. J. Comp. Neurol. 520, 4051-4066.   DOI
6 Bader, G.D. and Hogue, C.W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2.   DOI
7 American Psychiatric Association (2013). Desk Reference to the Diagnostic Criteria from DSM-5 (Washington, DC: American Psychiatric Publishing).
8 Andrus, B.M., Blizinsky, K., Vedell, P.T., Dennis, K., Shukla, P.K., Schaffer, D.J., Radulovic, J., Churchill, G.A., and Redei, E.E. (2012). Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol. Psychiatry 17, 49-61.   DOI
9 Bano-Otalora, B. and Piggins, H.D. (2017). Contributions of the lateral habenula to circadian timekeeping. Pharmacol. Biochem. Behav. 162, 46-54.   DOI
10 Buynitsky, T. and Mostofsky, D.I. (2009). Restraint stress in biobehavioral research: recent developments. Neurosci. Biobehav. Rev. 33, 1089-1098.   DOI
11 DePasquale, E.A.K., Schnell, D.J., Van Camp, P.J., Valiente-Alandi, I., Blaxall, B.C., Grimes, H.L., Singh, H., and Salomonis, N. (2019). DoubletDecon: deconvoluting doublets from single-cell RNA-sequencing data. Cell Rep. 29, 1718-1727.e8.   DOI
12 Chin, C.H., Chen, S.H., Wu, H.H., Ho, C.W., Ko, M.T., and Lin, C.Y. (2014). cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8 Suppl 4, S11.   DOI
13 Christiansen, S.L., Bouzinova, E.V., Fahrenkrug, J., and Wiborg, O. (2016). Altered expression pattern of clock genes in a rat model of depression. Int. J. Neuropsychopharmacol. 19, pyw061.   DOI
14 Dableh, L.J., Yashpal, K., Rochford, J., and Henry, J.L. (2005). Antidepressant-like effects of neurokinin receptor antagonists in the forced swim test in the rat. Eur. J. Pharmacol. 507, 99-105.   DOI
15 Gutierrez-Sacristan, A., Grosdidier, S., Valverde, O., Torrens, M., Bravo, A., Pinero, J., Sanz, F., and Furlong, L.I. (2015). PsyGeNET: a knowledge platform on psychiatric disorders and their genes. Bioinformatics 31, 3075-3077.   DOI
16 Chiba, S., Numakawa, T., Ninomiya, M., Richards, M.C., Wakabayashi, C., and Kunugi, H. (2012). Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry 39, 112-119.   DOI
17 Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287.   DOI
18 Fakhoury, M. (2017). The habenula in psychiatric disorders: more than three decades of translational investigation. Neurosci. Biobehav. Rev. 83, 721-735.   DOI
19 Ge, F., Mu, P., Guo, R., Cai, L., Liu, Z., Dong, Y., and Huang, Y.H. (2021). Chronic sleep fragmentation enhances habenula cholinergic neural activity. Mol. Psychiatry 26, 941-954.   DOI
20 Ghosal, S., Bang, E., Yue, W., Hare, B.D., Lepack, A.E., Girgenti, M.J., and Duman, R.S. (2018). Activity-dependent brain-derived neurotrophic factor release is required for the rapid antidepressant actions of scopolamine. Biol. Psychiatry 83, 29-37.   DOI
21 Hashikawa, Y., Hashikawa, K., Rossi, M.A., Basiri, M.L., Liu, Y., Johnston, N.L., Ahmad, O.R., and Stuber, G.D. (2020). Transcriptional and spatial resolution of cell types in the mammalian habenula. Neuron 106, 743-758.e5.   DOI
22 Hokfelt, T., Broberger, C., Xu, Z.Q., Sergeyev, V., Ubink, R., and Diez, M. (2000). Neuropeptides--an overview. Neuropharmacology 39, 1337-1356.   DOI
23 Hsu, Y.W., Morton, G., Guy, E.G., Wang, S.D., and Turner, E.E. (2016). Dorsal medial habenula regulation of mood-related behaviors and primary reinforcement by tachykinin-expressing habenula neurons. eNeuro 3, ENEURO.0109-16.2016.
24 Li, J.Z., Bunney, B.G., Meng, F., Hagenauer, M.H., Walsh, D.M., Vawter, M.P., Evans, S.J., Choudary, P.V., Cartagena, P., Barchas, J.D., et al. (2013a). Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc. Natl. Acad. Sci. U. S. A. 110, 9950-9955.   DOI
25 Kramer, M.S., Cutler, N., Feighner, J., Shrivastava, R., Carman, J., Sramek, J.J., Reines, S.A., Liu, G., Snavely, D., Wyatt-Knowles, E., et al. (1998). Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281, 1640-1645.   DOI
26 Lee, H.W., Yang, S.H., Kim, J.Y., and Kim, H. (2019). The role of the medial habenula cholinergic system in addiction and emotion-associated behaviors. Front. Psychiatry 10, 100.   DOI
27 Lee, M.R., Sheskier, M.B., Farokhnia, M., Feng, N., Marenco, S., Lipska, B.K., and Leggio, L. (2018). Oxytocin receptor mRNA expression in dorsolateral prefrontal cortex in major psychiatric disorders: a human post-mortem study. Psychoneuroendocrinology 96, 143-147.   DOI
28 Lin, L.C. and Sibille, E. (2013). Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target? Front. Pharmacol. 4, 110.   DOI
29 Li, K., Zhou, T., Liao, L., Yang, Z., Wong, C., Henn, F., Malinow, R., Yates, J.R., 3rd, and Hu, H. (2013b). βCaMKII in lateral habenula mediates core symptoms of depression. Science 341, 1016-1020.   DOI
30 Liao, W., Liu, Y., Huang, H., Xie, H., Gong, W., Liu, D., Tian, F., Huang, R., Yi, F., and Zhou, J. (2021). Intersectional analysis of chronic mild stress-induced lncRNA-mRNA interaction networks in rat hippocampus reveals potential anti-depression/anxiety drug targets. Neurobiol. Stress 15, 100347.   DOI
31 Meynen, G., Unmehopa, U.A., Hofman, M.A., Swaab, D.F., and Hoogendijk, W.J. (2007). Hypothalamic oxytocin mRNA expression and melancholic depression. Mol. Psychiatry 12, 118-119.   DOI
32 Nwokafor, C., Serova, L.I., Nahvi, R.J., McCloskey, J., and Sabban, E.L. (2020). Activation of NPY receptor subtype 1 by [D-His(26)]NPY is sufficient to prevent development of anxiety and depressive like effects in the single prolonged stress rodent model of PTSD. Neuropeptides 80, 102001.   DOI
33 Ozsoy, S., Esel, E., and Kula, M. (2009). Serum oxytocin levels in patients with depression and the effects of gender and antidepressant treatment. Psychiatry Res. 169, 249-252.   DOI
34 Dulawa, S.C. and Janowsky, D.S. (2019). Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol. Psychiatry 24, 694-709.   DOI
35 Yoo, H., Yang, S.H., Kim, J.Y., Yang, E., Park, H.S., Lee, S.J., Rhyu, I.J., Turecki, G., Lee, H.W., and Kim, H. (2021). Down-regulation of habenular calcium-dependent secretion activator 2 induces despair-like behavior. Sci. Rep. 11, 3700.   DOI
36 Cui, Y., Yang, Y., Ni, Z., Dong, Y., Cai, G., Foncelle, A., Ma, S., Sang, K., Tang, S., Li, Y., et al. (2018). Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554, 323-327.   DOI
37 Hikosaka, O. (2010). The habenula: from stress evasion to value-based decision-making. Nat. Rev. Neurosci. 11, 503-513.   DOI
38 Cheon, M., Park, H., Rhim, H., and Chung, C. (2019). Actions of neuropeptide Y on synaptic transmission in the lateral habenula. Neuroscience 410, 183-190.   DOI
39 Christensen, T., Jensen, L., Bouzinova, E.V., and Wiborg, O. (2013). Molecular profiling of the lateral habenula in a rat model of depression. PLoS One 8, e80666.   DOI
40 Geracioti, T.D., Jr., Carpenter, L.L., Owens, M.J., Baker, D.G., Ekhator, N.N., Horn, P.S., Strawn, J.R., Sanacora, G., Kinkead, B., Price, L.H., et al. (2006). Elevated cerebrospinal fluid substance p concentrations in posttraumatic stress disorder and major depression. Am. J. Psychiatry 163, 637-643.   DOI
41 Han, S., Yang, S.H., Kim, J.Y., Mo, S., Yang, E., Song, K.M., Ham, B.J., Mechawar, N., Turecki, G., Lee, H.W., et al. (2017). Down-regulation of cholinergic signaling in the habenula induces anhedonia-like behavior. Sci. Rep. 7, 900.   DOI
42 Hsu, Y.W., Wang, S.D., Wang, S., Morton, G., Zariwala, H.A., de la Iglesia, H.O., and Turner, E.E. (2014). Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement. J. Neurosci. 34, 11366-11384.   DOI
43 Lamont, E.W., Legault-Coutu, D., Cermakian, N., and Boivin, D.B. (2007). The role of circadian clock genes in mental disorders. Dialogues Clin. Neurosci. 9, 333-342.   DOI
44 Redrobe, J.P., Dumont, Y., Fournier, A., and Quirion, R. (2002). The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology 26, 615-624.   DOI
45 Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47(W1), W191-W198.   DOI
46 Li, Y., Li, G., Li, J., Cai, X., Sun, Y., Zhang, B., and Zhao, H. (2021). Depression-like behavior is associated with lower Per2mRNA expression in the lateral habenula of rats. Genes Brain Behav. 20, e12702.
47 McLaughlin, I., Dani, J.A., and De Biasi, M. (2017). The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation. J. Neurochem. 142 Suppl 2, 130-143.   DOI
48 Navarria, A., Wohleb, E.S., Voleti, B., Ota, K.T., Dutheil, S., Lepack, A.E., Dwyer, J.M., Fuchikami, M., Becker, A., Drago, F., et al. (2015). Rapid antidepressant actions of scopolamine: role of medial prefrontal cortex and M1-subtype muscarinic acetylcholine receptors. Neurobiol. Dis. 82, 254-261.   DOI
49 Purba, J.S., Hoogendijk, W.J., Hofman, M.A., and Swaab, D.F. (1996). Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch. Gen. Psychiatry 53, 137-143.   DOI
50 Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., and Woolsey, J. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34(Database issue), D668-D672.   DOI
51 Yi, J.H., Jeon, J., Kwon, H., Cho, E., Yun, J., Lee, Y.C., Ryu, J.H., Park, S.J., Cho, J.H., and Kim, D.H. (2020). Rubrofusarin attenuates chronic restraint stress-induced depressive symptoms. Int. J. Mol. Sci. 21, 3454.   DOI
52 Wallace, M.L., Huang, K.W., Hochbaum, D., Hyun, M., Radeljic, G., and Sabatini, B.L. (2020). Anatomical and single-cell transcriptional profiling of the murine habenular complex. Elife 9, e51271.   DOI
53 Saunders, A., Macosko, E.Z., Wysoker, A., Goldman, M., Krienen, F.M., de Rivera, H., Bien, E., Baum, M., Bortolin, L., Wang, S., et al. (2018). Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015-1030.e16.   DOI
54 Scantamburlo, G., Hansenne, M., Fuchs, S., Pitchot, W., Marechal, P., Pequeux, C., Ansseau, M., and Legros, J.J. (2007). Plasma oxytocin levels and anxiety in patients with major depression. Psychoneuroendocrinology 32, 407-410.   DOI
55 Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., et al. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1), D607-D613.   DOI
56 Yang, Y., Wang, H., Hu, J., and Hu, H. (2018). Lateral habenula in the pathophysiology of depression. Curr. Opin. Neurobiol. 48, 90-96.   DOI
57 Cochran, D.M., Fallon, D., Hill, M., and Frazier, J.A. (2013). The role of oxytocin in psychiatric disorders: a review of biological and therapeutic research findings. Harv. Rev. Psychiatry 21, 219-247.   DOI
58 Lee, S., Woo, J., Kim, Y.S., and Im, H.I. (2015). Integrated miRNA-mRNA analysis in the habenula nuclei of mice intravenously self-administering nicotine. Sci. Rep. 5, 12909.   DOI
59 Zeisel, A., Hochgerner, H., Lonnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., Haring, M., Braun, E., Borm, L.E., La Manno, G., et al. (2018). Molecular architecture of the mouse nervous system. Cell 174, 999-1014. e22.   DOI
60 Zelikowsky, M., Hui, M., Karigo, T., Choe, A., Yang, B., Blanco, M.R., Beadle, K., Gradinaru, V., Deverman, B.E., and Anderson, D.J. (2018). The neuropeptide Tac2 controls a distributed brain state induced by chronic social isolation stress. Cell 173, 1265-1279.e19.   DOI
61 Seo, J.S., Zhong, P., Liu, A., Yan, Z., and Greengard, P. (2018). Elevation of p11 in lateral habenula mediates depression-like behavior. Mol. Psychiatry 23, 1113-1119.   DOI
62 Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29.   DOI