Acknowledgement
This research was supported by the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2017M3C7A1079692 to H.K., NRF-2017R1D1A1B06032730 to H.W.L., and NRF-2019M3C7A1032764 to G.H.S.).
References
- Aizawa, H., Kobayashi, M., Tanaka, S., Fukai, T., and Okamoto, H. (2012). Molecular characterization of the subnuclei in rat habenula. J. Comp. Neurol. 520, 4051-4066. https://doi.org/10.1002/cne.23167
- American Psychiatric Association (2013). Desk Reference to the Diagnostic Criteria from DSM-5 (Washington, DC: American Psychiatric Publishing).
- Andrus, B.M., Blizinsky, K., Vedell, P.T., Dennis, K., Shukla, P.K., Schaffer, D.J., Radulovic, J., Churchill, G.A., and Redei, E.E. (2012). Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol. Psychiatry 17, 49-61. https://doi.org/10.1038/mp.2010.119
- Bader, G.D. and Hogue, C.W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2. https://doi.org/10.1186/1471-2105-4-2
- Bano-Otalora, B. and Piggins, H.D. (2017). Contributions of the lateral habenula to circadian timekeeping. Pharmacol. Biochem. Behav. 162, 46-54. https://doi.org/10.1016/j.pbb.2017.06.007
- Buynitsky, T. and Mostofsky, D.I. (2009). Restraint stress in biobehavioral research: recent developments. Neurosci. Biobehav. Rev. 33, 1089-1098. https://doi.org/10.1016/j.neubiorev.2009.05.004
- Cheon, M., Park, H., Rhim, H., and Chung, C. (2019). Actions of neuropeptide Y on synaptic transmission in the lateral habenula. Neuroscience 410, 183-190. https://doi.org/10.1016/j.neuroscience.2019.04.053
- Chiba, S., Numakawa, T., Ninomiya, M., Richards, M.C., Wakabayashi, C., and Kunugi, H. (2012). Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry 39, 112-119. https://doi.org/10.1016/j.pnpbp.2012.05.018
- Chin, C.H., Chen, S.H., Wu, H.H., Ho, C.W., Ko, M.T., and Lin, C.Y. (2014). cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8 Suppl 4, S11. https://doi.org/10.1186/1752-0509-8-S4-S11
- Christensen, T., Jensen, L., Bouzinova, E.V., and Wiborg, O. (2013). Molecular profiling of the lateral habenula in a rat model of depression. PLoS One 8, e80666. https://doi.org/10.1371/journal.pone.0080666
- Christiansen, S.L., Bouzinova, E.V., Fahrenkrug, J., and Wiborg, O. (2016). Altered expression pattern of clock genes in a rat model of depression. Int. J. Neuropsychopharmacol. 19, pyw061. https://doi.org/10.1093/ijnp/pyw061
- Cochran, D.M., Fallon, D., Hill, M., and Frazier, J.A. (2013). The role of oxytocin in psychiatric disorders: a review of biological and therapeutic research findings. Harv. Rev. Psychiatry 21, 219-247. https://doi.org/10.1097/HRP.0b013e3182a75b7d
- Cui, Y., Yang, Y., Ni, Z., Dong, Y., Cai, G., Foncelle, A., Ma, S., Sang, K., Tang, S., Li, Y., et al. (2018). Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554, 323-327. https://doi.org/10.1038/nature25752
- Dableh, L.J., Yashpal, K., Rochford, J., and Henry, J.L. (2005). Antidepressant-like effects of neurokinin receptor antagonists in the forced swim test in the rat. Eur. J. Pharmacol. 507, 99-105. https://doi.org/10.1016/j.ejphar.2004.11.024
- DePasquale, E.A.K., Schnell, D.J., Van Camp, P.J., Valiente-Alandi, I., Blaxall, B.C., Grimes, H.L., Singh, H., and Salomonis, N. (2019). DoubletDecon: deconvoluting doublets from single-cell RNA-sequencing data. Cell Rep. 29, 1718-1727.e8. https://doi.org/10.1016/j.celrep.2019.09.082
- Dulawa, S.C. and Janowsky, D.S. (2019). Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol. Psychiatry 24, 694-709. https://doi.org/10.1038/s41380-018-0219-x
- Fakhoury, M. (2017). The habenula in psychiatric disorders: more than three decades of translational investigation. Neurosci. Biobehav. Rev. 83, 721-735. https://doi.org/10.1016/j.neubiorev.2017.02.010
- Ge, F., Mu, P., Guo, R., Cai, L., Liu, Z., Dong, Y., and Huang, Y.H. (2021). Chronic sleep fragmentation enhances habenula cholinergic neural activity. Mol. Psychiatry 26, 941-954. https://doi.org/10.1038/s41380-019-0419-z
- Geracioti, T.D., Jr., Carpenter, L.L., Owens, M.J., Baker, D.G., Ekhator, N.N., Horn, P.S., Strawn, J.R., Sanacora, G., Kinkead, B., Price, L.H., et al. (2006). Elevated cerebrospinal fluid substance p concentrations in posttraumatic stress disorder and major depression. Am. J. Psychiatry 163, 637-643. https://doi.org/10.1176/appi.ajp.163.4.637
- Ghosal, S., Bang, E., Yue, W., Hare, B.D., Lepack, A.E., Girgenti, M.J., and Duman, R.S. (2018). Activity-dependent brain-derived neurotrophic factor release is required for the rapid antidepressant actions of scopolamine. Biol. Psychiatry 83, 29-37. https://doi.org/10.1016/j.biopsych.2017.06.017
- Gutierrez-Sacristan, A., Grosdidier, S., Valverde, O., Torrens, M., Bravo, A., Pinero, J., Sanz, F., and Furlong, L.I. (2015). PsyGeNET: a knowledge platform on psychiatric disorders and their genes. Bioinformatics 31, 3075-3077. https://doi.org/10.1093/bioinformatics/btv301
- Han, S., Yang, S.H., Kim, J.Y., Mo, S., Yang, E., Song, K.M., Ham, B.J., Mechawar, N., Turecki, G., Lee, H.W., et al. (2017). Down-regulation of cholinergic signaling in the habenula induces anhedonia-like behavior. Sci. Rep. 7, 900. https://doi.org/10.1038/s41598-017-01088-6
- Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29. https://doi.org/10.1016/j.cell.2021.04.048
- Hashikawa, Y., Hashikawa, K., Rossi, M.A., Basiri, M.L., Liu, Y., Johnston, N.L., Ahmad, O.R., and Stuber, G.D. (2020). Transcriptional and spatial resolution of cell types in the mammalian habenula. Neuron 106, 743-758.e5. https://doi.org/10.1016/j.neuron.2020.03.011
- Hikosaka, O. (2010). The habenula: from stress evasion to value-based decision-making. Nat. Rev. Neurosci. 11, 503-513. https://doi.org/10.1038/nrn2866
- Hokfelt, T., Broberger, C., Xu, Z.Q., Sergeyev, V., Ubink, R., and Diez, M. (2000). Neuropeptides--an overview. Neuropharmacology 39, 1337-1356. https://doi.org/10.1016/S0028-3908(00)00010-1
- Hsu, Y.W., Morton, G., Guy, E.G., Wang, S.D., and Turner, E.E. (2016). Dorsal medial habenula regulation of mood-related behaviors and primary reinforcement by tachykinin-expressing habenula neurons. eNeuro 3, ENEURO.0109-16.2016.
- Hsu, Y.W., Wang, S.D., Wang, S., Morton, G., Zariwala, H.A., de la Iglesia, H.O., and Turner, E.E. (2014). Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement. J. Neurosci. 34, 11366-11384. https://doi.org/10.1523/JNEUROSCI.1861-14.2014
- Kim, S.M., Cho, S.Y., Kim, M.W., Roh, S.R., Shin, H.S., Suh, Y.H., Geum, D., and Lee, M.A. (2020). Genome-wide analysis identifies NURR1-controlled network of new synapse formation and cell cycle arrest in human neural stem cells. Mol. Cells 43, 551-571. https://doi.org/10.14348/molcells.2020.0071
- Kramer, M.S., Cutler, N., Feighner, J., Shrivastava, R., Carman, J., Sramek, J.J., Reines, S.A., Liu, G., Snavely, D., Wyatt-Knowles, E., et al. (1998). Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281, 1640-1645. https://doi.org/10.1126/science.281.5383.1640
- Lamont, E.W., Legault-Coutu, D., Cermakian, N., and Boivin, D.B. (2007). The role of circadian clock genes in mental disorders. Dialogues Clin. Neurosci. 9, 333-342. https://doi.org/10.31887/DCNS.2007.9.3/elamont
- Lee, H.W., Yang, S.H., Kim, J.Y., and Kim, H. (2019). The role of the medial habenula cholinergic system in addiction and emotion-associated behaviors. Front. Psychiatry 10, 100. https://doi.org/10.3389/fpsyt.2019.00100
- Lee, M.R., Sheskier, M.B., Farokhnia, M., Feng, N., Marenco, S., Lipska, B.K., and Leggio, L. (2018). Oxytocin receptor mRNA expression in dorsolateral prefrontal cortex in major psychiatric disorders: a human post-mortem study. Psychoneuroendocrinology 96, 143-147. https://doi.org/10.1016/j.psyneuen.2018.05.039
- Lee, S., Woo, J., Kim, Y.S., and Im, H.I. (2015). Integrated miRNA-mRNA analysis in the habenula nuclei of mice intravenously self-administering nicotine. Sci. Rep. 5, 12909. https://doi.org/10.1038/srep12909
- Li, J.Z., Bunney, B.G., Meng, F., Hagenauer, M.H., Walsh, D.M., Vawter, M.P., Evans, S.J., Choudary, P.V., Cartagena, P., Barchas, J.D., et al. (2013a). Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc. Natl. Acad. Sci. U. S. A. 110, 9950-9955. https://doi.org/10.1073/pnas.1305814110
- Li, K., Zhou, T., Liao, L., Yang, Z., Wong, C., Henn, F., Malinow, R., Yates, J.R., 3rd, and Hu, H. (2013b). βCaMKII in lateral habenula mediates core symptoms of depression. Science 341, 1016-1020. https://doi.org/10.1126/science.1240729
- Li, Y., Li, G., Li, J., Cai, X., Sun, Y., Zhang, B., and Zhao, H. (2021). Depression-like behavior is associated with lower Per2mRNA expression in the lateral habenula of rats. Genes Brain Behav. 20, e12702.
- Liao, W., Liu, Y., Huang, H., Xie, H., Gong, W., Liu, D., Tian, F., Huang, R., Yi, F., and Zhou, J. (2021). Intersectional analysis of chronic mild stress-induced lncRNA-mRNA interaction networks in rat hippocampus reveals potential anti-depression/anxiety drug targets. Neurobiol. Stress 15, 100347. https://doi.org/10.1016/j.ynstr.2021.100347
- Lin, L.C. and Sibille, E. (2013). Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target? Front. Pharmacol. 4, 110. https://doi.org/10.3389/fphar.2013.00110
- McLaughlin, I., Dani, J.A., and De Biasi, M. (2017). The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation. J. Neurochem. 142 Suppl 2, 130-143. https://doi.org/10.1111/jnc.14008
- Meynen, G., Unmehopa, U.A., Hofman, M.A., Swaab, D.F., and Hoogendijk, W.J. (2007). Hypothalamic oxytocin mRNA expression and melancholic depression. Mol. Psychiatry 12, 118-119. https://doi.org/10.1038/sj.mp.4001911
- Morris, J.H., Kuchinsky, A., Ferrin, T.E., and Pico, A.R. (2014). enhancedGraphics: a Cytoscape app for enhanced node graphics. F1000Res. 3, 147. https://doi.org/10.12688/f1000research.4460.1
- Navarria, A., Wohleb, E.S., Voleti, B., Ota, K.T., Dutheil, S., Lepack, A.E., Dwyer, J.M., Fuchikami, M., Becker, A., Drago, F., et al. (2015). Rapid antidepressant actions of scopolamine: role of medial prefrontal cortex and M1-subtype muscarinic acetylcholine receptors. Neurobiol. Dis. 82, 254-261. https://doi.org/10.1016/j.nbd.2015.06.012
- Nwokafor, C., Serova, L.I., Nahvi, R.J., McCloskey, J., and Sabban, E.L. (2020). Activation of NPY receptor subtype 1 by [D-His(26)]NPY is sufficient to prevent development of anxiety and depressive like effects in the single prolonged stress rodent model of PTSD. Neuropeptides 80, 102001. https://doi.org/10.1016/j.npep.2019.102001
- Ozsoy, S., Esel, E., and Kula, M. (2009). Serum oxytocin levels in patients with depression and the effects of gender and antidepressant treatment. Psychiatry Res. 169, 249-252. https://doi.org/10.1016/j.psychres.2008.06.034
- Purba, J.S., Hoogendijk, W.J., Hofman, M.A., and Swaab, D.F. (1996). Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch. Gen. Psychiatry 53, 137-143. https://doi.org/10.1001/archpsyc.1996.01830020055007
- Quina, L.A., Wang, S., Ng, L., and Turner, E.E. (2009). Brn3a and Nurr1 mediate a gene regulatory pathway for habenula development. J. Neurosci. 29, 14309-14322. https://doi.org/10.1523/JNEUROSCI.2430-09.2009
- Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47(W1), W191-W198. https://doi.org/10.1093/nar/gkz369
- Redrobe, J.P., Dumont, Y., Fournier, A., and Quirion, R. (2002). The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology 26, 615-624. https://doi.org/10.1016/S0893-133X(01)00403-1
- Saunders, A., Macosko, E.Z., Wysoker, A., Goldman, M., Krienen, F.M., de Rivera, H., Bien, E., Baum, M., Bortolin, L., Wang, S., et al. (2018). Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015-1030.e16. https://doi.org/10.1016/j.cell.2018.07.028
- Scantamburlo, G., Hansenne, M., Fuchs, S., Pitchot, W., Marechal, P., Pequeux, C., Ansseau, M., and Legros, J.J. (2007). Plasma oxytocin levels and anxiety in patients with major depression. Psychoneuroendocrinology 32, 407-410. https://doi.org/10.1016/j.psyneuen.2007.01.009
- Seo, J.S., Zhong, P., Liu, A., Yan, Z., and Greengard, P. (2018). Elevation of p11 in lateral habenula mediates depression-like behavior. Mol. Psychiatry 23, 1113-1119. https://doi.org/10.1038/mp.2017.96
- Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., et al. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1), D607-D613. https://doi.org/10.1093/nar/gky1131
- Wallace, M.L., Huang, K.W., Hochbaum, D., Hyun, M., Radeljic, G., and Sabatini, B.L. (2020). Anatomical and single-cell transcriptional profiling of the murine habenular complex. Elife 9, e51271. https://doi.org/10.7554/elife.51271
- Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., and Woolsey, J. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34(Database issue), D668-D672. https://doi.org/10.1093/nar/gkj067
- Xu, P., Wang, K., Lu, C., Dong, L., Chen, Y., Wang, Q., Shi, Z., Yang, Y., Chen, S., and Liu, X. (2017). Effects of the chronic restraint stress induced depression on reward-related learning in rats. Behav. Brain Res. 321, 185-192. https://doi.org/10.1016/j.bbr.2016.12.045
- Yang, Y., Wang, H., Hu, J., and Hu, H. (2018). Lateral habenula in the pathophysiology of depression. Curr. Opin. Neurobiol. 48, 90-96. https://doi.org/10.1016/j.conb.2017.10.024
- Yi, J.H., Jeon, J., Kwon, H., Cho, E., Yun, J., Lee, Y.C., Ryu, J.H., Park, S.J., Cho, J.H., and Kim, D.H. (2020). Rubrofusarin attenuates chronic restraint stress-induced depressive symptoms. Int. J. Mol. Sci. 21, 3454. https://doi.org/10.3390/ijms21103454
- Yoo, H., Yang, S.H., Kim, J.Y., Yang, E., Park, H.S., Lee, S.J., Rhyu, I.J., Turecki, G., Lee, H.W., and Kim, H. (2021). Down-regulation of habenular calcium-dependent secretion activator 2 induces despair-like behavior. Sci. Rep. 11, 3700. https://doi.org/10.1038/s41598-021-83310-0
- Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287. https://doi.org/10.1089/omi.2011.0118
- Zeisel, A., Hochgerner, H., Lonnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., Haring, M., Braun, E., Borm, L.E., La Manno, G., et al. (2018). Molecular architecture of the mouse nervous system. Cell 174, 999-1014. e22. https://doi.org/10.1016/j.cell.2018.06.021
- Zelikowsky, M., Hui, M., Karigo, T., Choe, A., Yang, B., Blanco, M.R., Beadle, K., Gradinaru, V., Deverman, B.E., and Anderson, D.J. (2018). The neuropeptide Tac2 controls a distributed brain state induced by chronic social isolation stress. Cell 173, 1265-1279.e19. https://doi.org/10.1016/j.cell.2018.03.037