• Title/Summary/Keyword: Stress Intensity Factor

Search Result 1,226, Processing Time 0.022 seconds

Stress Analysis of Hollow Cylinder with Inner Cracks Subjected to Torsion Moment (내부크랙을 가지며 비틀림모멘트를 받는 중공축의 응력해석)

  • Lee, Jong-Sun;Ha, Young-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.46-52
    • /
    • 1998
  • In fracture problems, stress intensity factors obtained theoretically and experimentally have been effectively utilized in the analytical evolution of the cracks effect. The effect of surface crack of a cylindrical and a hollow cylindrical bar is investigated, as well as the effect of the thickness of a hollow cylindrical bar and inclined crack of a hollow cylinder subjected to torsion moment. In this study, stress intensity factor Km of mode III which expresses the stress state in the neighborhood of a crack tip is used. stress analysis was conducted on the inside of hollow cylinder inthe axial direction of three dimensional crack tip subjected to torsion moment by combining the caustics method and the stress freezing method.

  • PDF

The Effect of Residual Stress on Stress Intensity Factor and Fatigue Crack Growth Rate (잔류응력이 응력세기계수와 피로균열성장율에 미치는 영향)

  • Kang-Yong,Lee;Hong-Key,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.43-47
    • /
    • 1984
  • The purpose of this paper is to investigate theoretically the effect of residual stress due to welding in stress intensity factor of a plate containing the Model I Crack in different crack size and location, and on fatigue crack growth rate. The initiation of crack is found to be possible only in the region of tensile residual stress. The most dangerous crack has the values of d/b and a/b equal to about 0.6 and 1.0, respectively, where d/b is the ratio of distance from the crack to welding bead and the width of tensile residual stress region and a/b is the ratio of crack length and tensile residual stress region. The crack perpendicular to and on the line of welding bead and with a/b equal to about 0.6 has maximum stress intensity factor. The theoretical fatigue crack growth rate under residual stress and applied stress, which is obtained from Forman's Law by stress superposition, is relatively in good agreement with Glinka's[8] experimental value. The fatigue crack growth is shown to be retarded due to residual stress distribution.

  • PDF

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(I) (직교 이방성체의 동적 응력확대계수에 관한 연구(I))

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.313-330
    • /
    • 1993
  • The propagating crack problems under dynamic plane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems in orthortropic material, it is important to know the dynamic stress components and dynamic displacement components around the crack tip. Therefore the dynamic stress components of dynamic stress field and dynamic displacement components of dynamic displacement field in the crack tip of orthotropic material under the dynamic load and the steady state in crack propagation were derived. When the crack propagation speed approachs to zero, the dynamic stress component and dynamic displacement components derived in this study are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determinded by using the concept of crack closure closure energy with the dynamic stresses and represented according to physical properties of the orthotrophic material and crack speeds. The faster the crack velocity, the greater the stress value of stress components in crack tip. The stress value of the stress component of crack tip is greater when fiber direction coincides with the crack propagation than when fider direction is normal to the crack propagation.

Determination ofStress Intenstiy Factor by Strain Measurement (스트레인 측정에 의한 응력확대계수의 결정)

  • 이억섭;홍성경;윤경수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.369-374
    • /
    • 1993
  • Measurements of strain near a crack tip with electrical resistance strain gages do not usually provide a reliable value of stress intensity factor (K sub I) because of local yielding and limited regions for strain-gage placement. This paper attempted to define a valid region and to indicate procedures for locating and orienting the strain-gage to determine stress intensity factor accurately from one stain-gage readings.

  • PDF

Effect of Hydride Reorientation on Delayed Hydride Cracking In Zr-2.5Nb Tubes

  • Yun Yeo Bum;Kim Young Suk;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.529-536
    • /
    • 2003
  • The objective of this study is to investigate the reorientation of hydrides with applied stress intensity factor, the peak temperature and the time when to apply the stress intensity factor in a Zr-2.5Nb pressure tube during its thermal cycle treatment. Cantilever beam (CB) specimens with a notch of 0.5 mm in depth made from the Zr-2.5Nb tube were subjected to electrolytic hydrogen charging to contain 60 ppm H and then to a thermal cycle involving heating to the peak temperature of either 310 or $380^{\circ}C$, holding there for 50 h and then cooling to the test temperature of $250^{\circ}C$. The stress intensity factor of either 6.13 or $18.4\;MPa\sqrt{m}$ was applied at the beginning of the thermal cycle, at the end of the hold at the peak temperatures and after cooling to the test temperature, respectively. The reorientation of hydrides in the Zr-2.5Nb tube was enhanced with the increased peak temperature and applied stress intensity factor. Furthermore, when the CB specimens were subjected to $18.4\;MPa\sqrt{m}$ from the beginning of the thermal cycle, the reoriented hydrides occurred almost all over the Zr-2.5Nb tube, surprisingly suppressing the growth of a DHC crack. In contrast, when the CB specimens were subjected to the stress intensity factor at the test temperature, little reorientation of hydrides was observed except the notch region, leading the Zr-2.5Nb to grow a large DHC crack. Based on the correlation between the reorientation of hydrides and the DHC crack growth, a governing factor for DHC is discussed along with the feasibility of the Kim's DHC model.

Stress Intensity Factor Determination on the Crack Initiated from Notch Tip (노치에서 발생된 균열의 응력확대계수 해석)

  • 조용근;박종수;임창현;석창성;최용식
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.3-8
    • /
    • 1994
  • This paper has described the analysis of the Stress Intensity Factor behaviour of a short crack Initiated from notch tip. The model for finite element analysis is a double edge notched specimen. The parameters used in this study are crack length and notch root curvature radius.

  • PDF

Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam (U-노치 및 균열을 갖는 보의 응력집중계수 및 응력확대계수)

  • Seo, Bo Seong;Lee, Kwang Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.513-523
    • /
    • 2016
  • The stress concentration factors and stress intensity factors for a simple beam and a cantilever are analyzed by using finite element method and phtoelasticity. Using the analyzed results, the estimated graphs on stress concentration factors and stress intensity factors are obtained. To analyze stress concentration factors of notch, the dimensionless notch length H(height of specimen)/h=1.1~2 and dimensionless gap space r(radius at the notch tip)/h=0.1~0.5 are used. where h=H-c and c is the notch length. As the notch gap length increases and the gap decreases, the stress concentration factors increase. Stress concentration factors of a simple beam are greater than those of a cantilever beam. However, actually, the maximum stress values under a load, a notch length and a gap occur more greatly in the cantilever beam than in the simple beam. To analyze stress intensity factors, the normalized crack length a(crack length)/H=0.2~0.5 is used. As the length of the crack increases, the normalized stress intensity factors increase. The stress intensity factors under a constant load and a crack length occur more greatly in the cantilever beam than in the simple beam.

Intensity Factors for a Branched Crack in a Semi-Infinite Plate Under Tension and Bending Moments (인장과 굽힘을 받는 반 무한 평판내의 분기균열에 대한 강도계수)

  • 김유환;범현규;박치용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.461-464
    • /
    • 2000
  • A branched crack in a semi-infinite plate under tension and bending moment is considered. Intensity factors of the stress and moment for the branched crack are evaluated. The stress intensity factors are obtained by using the finite element method and the J-based mutual integral. The moment intensity factors are calculated by extrapolating the values of the moment near the crack tip. Approximate expressions are also obtained as functions of the branched crack length and branching angle.

  • PDF

Analysis of the Residual Stress due to Cold Expansion and Stress Intensity Factor in CT Specimen Using Finite Element Method (유한요소법을 이용한 CT 시편의 홀확장 잔류응력 및 응력확대계수 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Kim, Cheol;Ko, Myung-Hoon;Cho, Myoung-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.890-895
    • /
    • 2002
  • Cold expansion method is retarded of crack initiation due to the compressive residual stress developed on the hole surface. Previous research has just been study about residual stress distribution in the hole surrounding. But, The purpose of this study was to improve the understanding of the residual stress effect in hole surrounding as crack growth from another hole. In this paper, it is shown that residual stress is redistributed due to the application of cold expansion process for CT specimen using finite element method. It is further shown that tensile stress increases in proportion to cold expansion ratio in the vicinity of crack. It is thought that stress intensity factor increases with cold expansion ratio.