• Title/Summary/Keyword: Strategy model

Search Result 5,401, Processing Time 0.031 seconds

AN IMPULSIVE STAGE-STRUCTURED OPTIMAL CONTROL PROBLEM AND OPTIMAL HARVEST STRATEGY OF PACIFIC COD, GADUS MICROCEPHALUS, IN THE SOUTH KOREA

  • Cho, Giphil;Jeong, Yong Dam;Kim, Sangil;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.683-691
    • /
    • 2018
  • We consider an optimal control problem for an impulsive stage-structured model involving ordinary differential equations with impulsive values of initial conditions in the next year. The main goal is to maximize a profit of the catch of Pacific cod in the South Korea through optimal harvest strategy as a control of adult cod. We established necessary conditions for the optimal harvest control using idea of Pontryagin's maximum principle. The optimal harvest strategy is to numerically solve the equation by using an iterative method with the Runge-Kutta method. Finally, we compare a monthly average of fishing mortality of Pacific cod from 2013 to 2017 with monthly fishing mortality for result obtained optimal harvest strategy.

The Decision Making Strategy for Determining the Optimal Production Time : A Stochastic Process and NPV Approach (최적생산시기 결정을 위한 의사결정전략 : 추계적 과정과 순현재가치 접근)

  • Choi, Jong-Du
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.147-160
    • /
    • 2007
  • In this paper, the optimal decision making strategy for resource management is viewed in terms of a combined strategy of planting and producing time. A model which can be used to determine the optimal management strategy is developed, and focuses on how to design the operation of a Markov chain so as to optimize its performance. This study estimated a dynamic stochastic model to compare alternative production style and used the net present value of returns to evaluate the scenarios. The managers in this study may be able to increase economic returns by delaying produce in order to market larder, more valuable commodities.

New Control Strategy for Reducing Switching Losses in Three-Phase Voltage-Source PWM Converters

  • Dong, Xiaopeng;Wang, Zhaoan
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.366-373
    • /
    • 1998
  • In this paper, a new control strategy to reduce switching losses in three-phase voltage-source PWM converters is proposed according to Modified-Period-Average-Model (MPAN). The basic concept of this strategy is aimed at calculating the phase control voltages for controlling the source currents to be sinusoidal and in phase with the source voltages, and reducing the number of switching in each period. The phase control voltages of Period-Average-Model(PAM) is obtained according to analyzing the operation of PWM converter. In order to reduce the sensitivity to system parameters in PAM, MPAM is deduced. Then a square wave whose frequency is three times of utility frequency is added to the phase control voltages derived from MPAM. The control strategy reduces the switching losses since there exists about one-third blanking time for every phase in one period. The theoretical derivation and the control strategy are experimentally verified on a 2.5 kW three-phase voltage source converter.

  • PDF

Solving Mixed Strategy Nash-Cournot Equilibria under Generation and Transmission Constraints in Electricity Market

  • Lee, Kwang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.675-685
    • /
    • 2013
  • Generation capacities and transmission line constraints in a competitive electricity market make it troublesome to compute Nash Equilibrium (NE) for analyzing participants' strategic generation quantities. The NE can cause a mixed strategy NE rather than a pure strategy NE resulting in a more complicated computation of NE, especially in a multiplayer game. A two-level hierarchical optimization problem is used to model competition among multiple participants. There are difficulties in using a mathematical programming approach to solve a mixed strategy NE. This paper presents heuristics applied to the mathematical programming method for dealing with the constraints on generation capacities and transmission line flows. A new formulation based on the heuristics is provided with a set of linear and nonlinear equations, and an algorithm is suggested for using the heuristics and the newly-formulated equations.

A Fault Tolerant Strategy Based on Model Predictive Control for Full Bidirectional Switches Indirect Matrix Converter

  • Le, Van-Tien;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.74-76
    • /
    • 2019
  • This paper proposes an open-switch fault tolerant strategy based on the model predictive control for a full bidirectional switches indirect matrix converter (FBS-IMC). Compared to the conventional Indirect Matrix Converter (IMC), the FBS-IMC can provide healthy current path when open-switch fault is occurred. To keep the continuous operation, the fault tolerant strategy is developed by means of reversing the DC-link voltage polarity regardless of the faulty switch location in the rectifier or inverter stage. Therefore, the proposed control strategy can maintain the same input and output performances during the faulty condition as the normal condition. The simulation results are given to verify the effectiveness of the proposed strategy.

  • PDF

A Model for Aligning Business and Information Technology Strategies (경영정보시스템전략과 경영전략의 결합에 대한 모델 연구)

  • Lee, Sun-Cheol
    • Asia pacific journal of information systems
    • /
    • v.3 no.1
    • /
    • pp.3-30
    • /
    • 1993
  • This paper provides a model for aligning business and information technology strategies. The model, expanded from the earlier study by Henderson and Venkatraman, is composed of four elements: business strategy, business infrastructure, information technology strategy, and information technology infrastructure, and suggests different ways of aligning business and information technology strategies. Basically, there are three types of aligning: integrating, domain based aligning, business reengineering. The validity of the model is supported by case studies.

  • PDF

Accuracy of Bite Registration Using Intraoral Scanner Based on Data Trimming Strategy for Fremitus Teeth

  • Jeong, Yuwon;Shim, June-Sung;Kim, Jee-Hwan;Kim, Jong-Eun;Lee, Hyeonjong
    • Journal of Korean Dental Science
    • /
    • v.15 no.1
    • /
    • pp.61-67
    • /
    • 2022
  • Purpose: This study aimed to evaluate the accuracy of bite registration using intraoral scanner based on data trimming strategy for fremitus teeth. Materials and Methods: A reference model was designed by Medit Model Builder software (MEDIT Corp., Seoul). Tooth number 24 and 25 were separated as dies and tooth number 26 was prepared for full-coverage crown. Those were printed using a 3D printer (NextDent 5100). The scanning procedure was performed by a single trained operator with one intraoral scanner (i700; MEDIT Corp.). The scanning groups were divided as follows: group 1 (G1), no fremitus; group 2 (G2), 0.5 mm buccal fremitus in the maxillary left first and second premolar; and group 3 (G3), 1.5 mm buccal fremitus in the maxillary left first and second premolar. Each group was scanned 10 times and were analyzed using the reference model data. Surface-based occlusal clearance was analyzed at the prepared tooth to evaluate accuracy. Result: Mean values of control group (G1) were 1.587±0.021 mm. G2 showed similar values to those from the control group (1.580±0.024 mm before trimming strategy and 1.588±0.052 mm after trimming strategy). G3 showed significantly greater values (1.627±0.025 mm before trimming strategy and 1.590±0.024 mm after trimming strategy) and the differences were found between trimming strategy (P=0.004). Conclusion: Bite trimming strategy for fremitus teeth is a reliable technique to reduce inaccuracies caused by the mobility at maximum intercuspation.

An optimized deployment strategy of smart smoke sensors in a large space

  • Liu, Pingshan;Fang, Junli;Huang, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3544-3564
    • /
    • 2022
  • With the development of the NB-IoT (Narrow band Internet of Things) and smart cities, coupled with the emergence of smart smoke sensors, new requirements and issues have been introduced to study on the deployment of sensors in large spaces. Previous research mainly focuses on the optimization of wireless sensors in some monitoring environments, including three-dimensional terrain or underwater space. There are relatively few studies on the optimization deployment problem of smart smoke sensors, and leaving large spaces with obstacles such as libraries out of consideration. This paper mainly studies the deployment issue of smart smoke sensors in large spaces by considering the fire probability of fire areas and the obstacles in a monitoring area. To cope with the problems of coverage blind areas and coverage redundancy when sensors are deployed randomly in large spaces, we proposed an optimized deployment strategy of smart smoke sensors based on the PSO (Particle Swarm Optimization) algorithm. The deployment problem is transformed into a multi-objective optimization problem with many constraints of fire probability and barriers, while minimizing the deployment cost and maximizing the coverage accuracy. In this regard, we describe the structure model in large space and a coverage model firstly, then a mathematical model containing two objective functions is established. Finally, a deployment strategy based on PSO algorithm is designed, and the performance of the deployment strategy is verified by a number of simulation experiments. The obtained experimental and numerical results demonstrates that our proposed strategy can obtain better performance than uniform deployment strategies in terms of all the objectives concerned, further demonstrates the effectiveness of our strategy. Additionally, the strategy we proposed also provides theoretical guidance and a practical basis for fire emergency management and other departments to better deploy smart smoke sensors in a large space.

HEDGING OF OPTION IN JUMP-TYPE SEMIMARTINGALE ASSET MODEL

  • Oh, Jae-Pill
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.2
    • /
    • pp.87-100
    • /
    • 2009
  • Hedging strategy for European option of jump-type semimartingale asset model, which is derived from stochastic differential equation whose driving process is a jump-type semimartingle, is discussed.

  • PDF

The Effect of Multiagent Interaction Strategy on the Performance of Ant Model (개미 모델 성능에서 다중 에이전트 상호작용 전략의 효과)

  • Lee Seung-Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • One of the important fields for heuristics algorithm is how to balance between Intensificationand Diversification. Ant Colony System(ACS) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we propose Multi Colony Interaction Ant Model that achieves positive negative interaction through elite strategy divided by intensification strategy and diversification strategy to improve the performance of original ACS. And, we apply multi colony interaction ant model by this proposed elite strategy to TSP and compares with original ACS method for the performance.

  • PDF