
J. KSIAM Vol.13, No.2, 87–100, 2009

HEDGING OF OPTION IN JUMP-TYPE SEMIMARTINGALE ASSET MODEL
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ABSTRACT. Hedging strategy for European option of jump-type semimartingale asset model,
which is derived from stochastic differential equation whose driving process is a jump-type
semimartingle, is discussed.

1. INTRODUCTION

In this paper, we derive a jump-type asset model derived from stochastic differential equa-
tion(SDE) whose driving process is a jump-type semimartingle, and discuss hedging problem
for European option by this asset model. We will get a closed form of the hedging strategy for
our risky asset model.

We assume our asset model is a jump-type H2-semimartingale which is decomposable. This
market is an incomplete market because in this market there is no perfect hedging of option in
general. We need the notion of equivalent and minimal martingale measures. Further, the
notion of risk-minimization can not be used in general because of semimartingale in this asset
model. Thus, we need the notion of stopping time, and the theory of small perturbation to the
strategy and of locally risk-minimization to get optional strategy.

On the other hand, we define and use an adjusting function. Thus our model is more general
than another semimartingale asset models because we do not restrict our model as a jump-
diffusion process. But, to think option price and to get hedging strategy of option, we restrict
our semimartingale model to a Markov process because we must premise the existence of den-
sity function. Our model without Markov property is an open problem, and also our adjusting
function should be studied more in future.

In general, we know the distributions (the density function) of the returns of asset models
have asymmetric leptokurtic figures by empirical results. Further, we know such a return model
is a hyperbolic Lev́y motion(pure jump-type). In [1], we meet an asset model:

dSt = St−[dZt + (e∆Zt − 1−∆Zt)], (1.1)
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and whose driving process is jump-type semimartingale(Lévy process without Gaussian part):

Zt = bt +
∫ t

0

∫

|z|≤1
zÑp(dz, ds) +

∫ t

0

∫

|z|>1
zNp(dz, ds),

where Ñp(dz, dt) = Np(dz, dt)− ν(dz)dt, b is the drift of Lévy process, ν is a Lévy measure
on R satisfying ν({0}) = 0, ν({z; |z| ≥ 1}) < ∞ and

∫
|z|<1 |z|2ν(dz) < ∞. As pointed out

in articles [1] and [2], this asset model is very realistic in view of some empirical sense if we
look at the microstructure of stock price movements. In article [1], we also meet the density
function of this jump-type return model, and compare with the density function of hyperbolic
Lev́y motion. Further in [3], we meet many tables and figures which show the reasonability of
asset model derived from the SDE (1.1).

In this paper, we introduce more general asset model which is defined by the solution of
SDE;

dSt = v(St−)[dZt + (e∆Zt − 1−∆Zt)], (1.2)
whose driving process is a jump-type semimartingale(Lévy process without Gaussian part):

Zt = bδt +
∫ t

0

∫

|z|<δ
zÑp(dz, ds) +

∫ t

0

∫

|z|≥δ
zNp(dz, ds), (1.3)

where v(·) is a adjusting function, bδ is the drift of Lévy process, ν is a Lévy measure on R
satisfying ν({0}) = 0, ν({z; |z| ≥ δ}) < ∞ and

∫
|z|<δ |z|2ν(dz) < ∞.

In many real stock markets, the amplitude is limited in [−0.15, 0.15] in a day. Thus, as our
asset model, we choice an jump-type semimartingale

St = S0 +
∫ t

0
v(Ss−)

∫

|z|<δ
(ez − 1)Ñp(dz, ds) (1.4)

+
∫ t

0
bδv(Ss−)ds +

∫ t

0
v(Ss−)

∫

|z|<δ
(ez − 1− z)ν(dz)ds,

which is derived from the solution of SDE (2) having deriving process (3), and is vanished big
jump part;

∫ t
0 v(Ss−)

∫
|z|≥δ(e

z − 1)Np(dz, ds). We will not think the interest rate except the
basic theory section for simplicity. Thus it is more meaningful if we think for short period time.

We define the value uQ∗(t, St) of European option H(ST ) at time t with maturity T :

uQ∗(t, St) := EQ∗ [H(ST )|Ft], (1.5)

where EQ∗ is an expectation with respect to the minimum equivalent martingale measure Q∗.
Then we get the hedging of this option. A trading strategy πt of risky asset St is defined by
Ft-predictable process taking values in R with

∫ T

0
‖πt‖2dt < ∞ a.s.,

and representing the amounts of hold over time. We will constrain the process πt; 0 ≤ t ≤ T
is left-continuous to take the jumps into account.
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A value process Vt(π); 0 ≤ t ≤ T of portfolio πt with initial capital V0, is defined by

Vt(π) := πtSt.

Suppose our option H is in L2(P ). Then local risk-minimization strategy πt is given by
πt = D(t, St), where

D(t, x) =

∫
U (ezv(x)− v(x))[u(s, ezv(x))− u(t, x)]ν(dz)∫

U (ezv(x)− v(x))2ν(dz)
, (1.6)

where U = {z||z| < δ}.
Section 2 is a preliminary section. In this section, we introduce some basic notations and

terminologies. In section 3, we define our asset model by the solution of SDE. In section 4, we
study the hedging problems. In this section, we use a minimal martingale measure Q∗, which
is a equivalent measure to given probability P and makes asset price process St a martingale.
We get a closed form of the local risk-minimization strategy.

2. BASIC THEORY

2.1. Basic Notions. Let (Ω, F, P ) be a probability space carrying a filtration Ft; 0 ≤ t ≤ T
of a right continuous increasing family of sub σ-fields of given F . Let Xt; 0 ≤ t ≤ T be a
semimartingale defined on (Ω, F, P ) with a decomposition

Xt = X0 + Mt + At, (2.1)

such that Mt; 0 ≤ t ≤ T is a square-integrable local martingale with M0 = 0 and At; 0 ≤ t ≤
T is a predictable process of finite variation with A0 = 0.

Let Xt; 0 ≤ t ≤ T denote the price of a given stock at t. A trading strategy πt; 0 ≤ t ≤ T
of risky asset Xt is defined by an Ft-predictable process taking values in R with

∫ t

0
πsdXs; 0 ≤ t ≤ T (2.2)

is a square-integrable semimartingale. A value process Vt(Π); 0 ≤ t ≤ T of the portfolio
Πt = (πt, π

0
t ) is right continuous satisfying Vt(Π) ∈ L2(P ), and is defined by

Vt(Π) := πtXt + π0
t , (2.3)

where π0
t ; 0 ≤ t ≤ T is a adapted process which denote the amounts of bound Y := 1. The

square-integrable of (8) is equivalent to

E

[∫ T

0
π2

sd < M >s +
(∫ T

0
|πs|d|A|s

)2
]

< ∞, (2.4)

which means that

πt ∈ L2(PM ) and

∫ T

0
|πs|d|A|s ∈ L2(P ).
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The right-continuous square-integrable process Ct(Π) defined by

Ct(Π) = Vt(Π)−
∫ t

0
πsdXs, 0 ≤ t ≤ T

is called the accumulated cost process of Πt. A contingent claim H at time T is given by a
non-negative FT -measurable random variable in L2(P ), i.e., H ∈ L2(Ω, F, P ), and denote as
H := H(XT ).

We shall concentrate on strategies which are H-admissible in the sense that

VT (Π) = H, P − a.s.;

Π is then said to generate H . This means that our option is replicable. As a measure of
riskiness, we introduce the it remaining risk process Rt(Π) of Πt at a fixed time t defined by

Rt(Π) := E[(CT (Π)− Ct(Π))2|Ft], 0 ≤ t ≤ T, (2.5)

which is a right-continuous version. A strategy Πt is called self-financing if the cost process
Ct(Π) is constant(i.e., time-invariant), and called mean-self-financing if the Ct(Π) is a martin-
gale in P -a.s., i.e.,

E[CT (Π)− Ct(Π)|Ft] = 0, 0 ≤ t ≤ T. (2.6)
Further, a strategy Πt is self-financing if

dVt(Π) = πtdXt + π0
t dt, (2.7)

more precisely,

Vt(Π) = V0 +
∫ t

0
πsdXs.

Let us, first, think a complete market. A contingent claim H is called attainable if it is of
the Itô representation form

H = H0 +
∫ T

0
πsdXs, P − a.s.

with a constant H0 and a predictable process πt satisfying (10). Suppose that contingent claim
H admits above Itô representation, then there is a strategy Πt = (πt, π

0
t ) defined by

πt := πH
t , π0

t := Vt − πtXt, Vt := H0 +
∫ t

0
πH

s dXs, 0 ≤ t ≤ T

Let us exclude arbitrage opportunities. We assume the existence and the uniqueness of an
equivalent martingale measure Q. More precisely, we assume that Q is a probability measure
on (Ω, F ) such that

dQ/dP ∈ L2(Ω, F.P )
and Xt is a martingale under Q even if Xt is a semimartingale under P . Then the strategy in
(13) can be identified as follow; Vt = EQ[H|Ft] and πH

t is obtained as the Radon-Nikodym
derivative

πH
t = d < V, X >Q

t /d < X >Q
t ,
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where < V, X > is the covariance process associated to V and X . Thus, the strategy can be
identified in terms of Q.

2.2. Risk-Minimization. Let us think an incomplete market. If P = Q, where X is a (jump-
type) martingale under the initial measure P , we can look for an admissible strategy which
minimizes (11) for each time t. In this case, H is attainable if and only if this remaining risk
process (11) can be reduce to 0, since this is equivalent to

Ct = CT = H0, 0 ≤ t ≤ T,

i.e., a strategy Πt is self-financing: Ct(π) is constant. Let the market be incomplete and self-
financing with P = Q. We impose the condition:

∫ T

0
|π0

s |ds +
∫ T

0
|πs|2ds < ∞, a.s.,

and a stronger condition of integrability on the processes πt; 0 ≤ t ≤ T as following: an
admissible strategy is defined by an adapted, left-continuous process πt; 0 ≤ t ≤ T with
values in R2 satisfying (13) a.s. for all t ∈ [0, T ],

E[
∫ T

0
(πs)2(Ss)2ds] < ∞. (2.8)

Then we get;

Proposition 2.1. Let πt; 0 ≤ t ≤ T be an adapted, left continuous process satisfying (17). Let
V0 ∈ R+. Then there exists a unique process π0

t ; 0 ≤ t ≤ T such that Πt; 0 ≤ t ≤ T defines
an optional strategy with initial values V0. Further, the value process Vt; 0 ≤ t ≤ T of strategy
πt is given by

Vt = V0 +
∫ t

0
πsdSs.

But for a general contingent claim H ∈ L2(Ω, F, P ), the cost process Ct associated to a
risk-minimizing strategy is no longer be self-financing. It will be mean-self-financing in the
sense (12). In other words, the cost process Ct(Π) associated to a risk-minimizing strategy is
a martingale. In this case, we can show the existence of a unique risk-minimizing strategy as
following. Let Πt; 0 ≤ t ≤ T be a trading strategy. An admissible continuation of Πt from t
on is a trading strategy Π̃t satisfying

π̃s = πs for s ≤ t,

π̃0
s = π0

s for s < t,

VT (Π̃) = VT (Π), P − a.s.

An admissible variation of Πt from t on is a trading strategy ∆t = (δt, δ
0
t ) such that Πt + ∆t

is an admissible continuation of Πt from t on. A trading strategy Πt is called risk-minimizing
if, for any t ∈ [0, T ) and for any admissible continuation Π̃t of Πt from t on, we have

Rt(Π̃) ≥ Rt(Π), P − a.s.
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or equivalently if
Rt(Π + ∆) ≥ Rt(Π), P − a.s.

for every admissible variation ∆t of Π from t on.
Let Πt = (πt, π

0
t ) be a trading strategy and t ∈ [0, T ]. Then there exists a trading strategy

Π̂ satisfying
(i) VT (Π̂) = VT (Π), P − a.s.

(ii) Cs(Π̂) = E[CT (Π)|Fs], P − a.s. for t ≤ s ≤ T .
(iii) Rs(Π̂) ≤ Rs(Π), P − a.s. for t ≤ s ≤ T .
(iv) If we choose t := 0, then Π̂ is mean-self-financing.
In the martingale case, the risk-minimization of Π is completely solved by using the Kunita-

Watanabe decomposition: Consider the Kunita-Watanabe decomposition

H = H0 +
∫ T

0
πH

s dXs + LH
T (2.9)

with H0 ∈ L2(Ω, F0, P ), where (LH
T ), 0 ≤ t ≤ T is a square-integrable martingale orthogonal

to X . Then the risk-minimizing strategy is now given by

πt = πH
t , π0

t = Vt − πtXt, Vt := H0 +
∫ T

0
πH

s dXs, 0 ≤ t ≤ T. (2.10)

In the present martingale case, the precess Vt can also be computed directly as a right-continuous
version of the martingale

Vt = E[H|Ft], 0 ≤ t ≤ T.

Further, πH
t is given by πH

t = d < V,X >t /d < X >t.

2.3. Local Risk-Minimization. Let us now consider the general incomplete case, where P ∼
Q, but P is itself is no longer a martingale measure. Here the situation becomes more subtle,
and we need a projection method which is no longer standard.

A trading strategy ∆t = (δt, δ
0
t ) is called a small perturbation if it satisfies the following

conditions: δt and
∫ T
0 δsd|A|s are bounded with δT = δ0

T = 0. Let Π be a trading strategy,
∆ be a small perturbation and τ be a partition of [0, T ] in the sense of [9]. The strategy Π is
called locally risk-minimizing if

lim inf
n→∞ rτn [Π, ∆] ≥ 0, PM − a.s. (2.11)

for every small perturbation ∆ and every increasing 0-convergent sequence (τn) of partitions
of [0, T ], where rτ [Π, ∆] is the risk-quotient in the sense of [9].

This definition is made precise in terms of the differentiation of semimartingale, and it is
shown to be essentially equivalent to the following property of the associated cost process
Ct, 0 ≤ t ≤ T :

Definition 2.2. An admissible strategy Πt = (πt, π
0
t ) is called optimal if the associated cost

process Ct is a square-integrable martingale orthogonal to M under P .
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In discrete time, a unique optimal strategy does exist, and it can be determined by a se-
quential regression procedure running backwards for time T to time 0. In continuous time, the
construction of such a strategy becomes more difficult as following;

Proposition 2.3. (1) The existence of an optimal strategy Πt = (πt, π
0
t ) is equivalent to a

decomposition (2.9) with H0 ∈ L2(Ω, F0, P ), where πH
t satisfies (2.10) and LH

t , 0 ≤ t ≤ T is
a square-integrable martingale orthogonal to M which is the martingale component of X .

(2) For such a decomposition, the associated optimal strategy Πt = (πt, π
0
t ) is given by

(2.10).

Now, the problem is reduced to finding the representation (2.9) and LH
t , 0 ≤ t ≤ T which

is of Proposition 2.3. But if Xt is not a martingale, we can not use the usual Kunita-Watanabe
projection technique. One possible approach is to use Kunita-Watanabe decomposition, and
get an optimality equation. But we introduce another method to get the uniqueness of the
decomposition (2.9) and of the corresponding optimal strategy, and it is robustness under an
equivalent change of measure.

2.4. Uniqueness of Decomposition. In our case, the martingale measure Q may lead to dif-
ferent strategy. But it turns out that there is a minimal martingale measure Q∗ ∼ P such that
the optimal strategy for P can be computed in terms of Q∗. In this partial sense, robustness
will extend to our case.

Let Q be an equivalent measure with respect to the given probability P . More precisely, we
assume that Q(∼ P ) is a probability measure on (Ω, F ) such that dQ/dP is in L2(Ω, F, P ) and
X is a martingale under Q. This martingale measure Q is determined by the right continuous
square-integrable martingale Gt, 0 ≤ t ≤ T with

Gt := EP [dQ/dP |Ft], 0 ≤ t ≤ T. (2.12)

Under Q, the Doob-meyer decomposition of M is given by M = X −X0 + (−A). But, from
the Girsanov transformation, the predictable process of bounded variation can be computed in
terms of G:

−At =
∫ t

0

1
Gs−

d < M,G >s, 0 ≤ t ≤ T. (2.13)

Since < M, G >¿< M >=< X >, the process At must be absolutely continuous w.r.t. the
variation process < X >, i.e.,

At =
∫ t

0
αsd < X >s, 0 ≤ t ≤ T (2.14)

for some predictable process αt, 0 ≤ t ≤ T .

Definition 2.4. A martingale measure Q∗ ∼ P is called minimal if Q∗ = P on F0, and if any
square-integrable P -martingale Lt which is orthogonal to Mt under P remains a martingale
under Q∗, i.e., Lt ∈ M2 and < L,M >t= 0 implies that Lt is a martingale under Q∗.

Let us think the existence and uniqueness of the minimal martingale measure Q∗.
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Proposition 2.5. (1) The minimal martingale measure Q∗ is uniquely determined.
(2) Q∗ exists if and only if

G∗
t = exp{−

∫ t

0
αsdMs − (1/2)

∫ t

0
α2

sd < X >s}, 0 ≤ t ≤ T (2.15)

is a square-integrable martingale under P . In this case, Q∗ is given by dQ∗/dP = G∗
T .

(3) The minimal martingale measure Q∗ preserves orthogonality. That is any L ∈ M2 with
< L, M >= 0 under P satisfies < L, X >= 0 under Q∗.

The definition of minimal martingale measure means that Q∗ preserves the martingale prop-
erty as far as possible under the restriction ”X is a martingale under Q”. This minimal departure
from the given measure P can also be expressed in terms of the relative entropy

H(Q|P ) =
∫

log
dQ

dP
dQ, if Q << P,

+∞, otherwise.

This relative entropy is always nonnegative.

Proposition 2.6. (1) In the class of all martingale measure Q, the minimal martingale measure
Q∗ is characterized by the fact that it minimizes the functional

H(Q|P )− (1/2)EQ[
∫ T

0
α2

sd < X >s]. (2.16)

(2) Measure Q∗ minimizes the relative entropy H(·|P ) among all martingale measure Q
with fixed expectation

EQ[
∫ T

0
α2

sd < X >s]. (2.17)

Proposition 2.7. (1) The optimal strategy, which is also corresponding decomposition (2.12),
is uniquely determined.

(2) It can be computed in terms of the minimal martingale measure Q∗: If Vt, 0 ≤ t ≤ T
denotes a right-continuous version of the martingale

Vt = EQ∗ [H|Ft] 0 ≤ t ≤ T,

then the optional strategy Πt = (πt, π
0
t ) is given by (2.13) where

πH
t =

d[V, X]Q
∗

t

d[X]Q
∗

t

, (2.18)

is obtained by projecting the Q∗-martingale V on the Q∗-martingale X .
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3. ASSET MODEL

In general, asset models are started form one of assumptions which are of two kinds of
return rates. One is Yt defined by ∆Yt = log Xt − log Xt−, and the other is ∆Zt defined by
∆Zt = (Xt −Xt−)/Xt−. Let us start from the second assumption:

Xt −Xt− = Xt− ·∆Zt. (3.1)

But we can see, from Table 1 and Table 2 which are of two assets in KOSPI and two assets in
KOSDAQ, that ∆Zt(the difference of amplitudes) of each asset are different. Thus, to use same
leptokurtic distribution (and density) function of ∆Zt, we need to modify equation (3.1) by an
adjusting function v which is a positive C1-function defined from assumption: if ∆Zt → 0(i.e.,
∆Xt → 0), then v(Xt−) → Xt−(i.e., v(x) → x). Then we get new difference equation:

Xt −Xt− = v(Xt−) ·∆Zt. (3.2)

TABLE 1. Price Amplitudes of Samsung ELE. and Hynix. Feb. 9th, A.M.
11:06:50–11:08:20, 2009

Price of Amplitude for Difference of Price of Amplitude for Difference of
Stock Day Initial Price Amplitude Sodck Day Initial Price Amplitude

529,000 -2.94 % 0.19 % 9,570 2.03 % 0.11 %
530,000 -2.75 % 0.18 % 9,560 1.92 % 0.11 %
531,000 -2.57 % 0.18 % 9,550 1.81 % 0.10 %
532,000 -2.39 % 0.19 % 9,540 1.71 % 0.11 %
533,000 -2.20 % 0.18 % 9,530 1.60 % 0.11 %
534,000 -2.02 % 0.19 % 9,520 1.49 % 0.10 %
535,000 -1.83 % 0.18 % 9,510 1.39 % 0.11 %
536,000 -1.65 % ... 9,500 1.28 % ....

....... ..... ... ..... .... ....

On the other hand, ∆Zt is in open interval (−1,∞). Therefore, to represent more exact
range of ∆Zt, we use a function of ∆Zt of the form e∆Zt − 1 which is in (−1,∞) strictly.
Thus we use equation

Xt −Xt− = v(Xt−) · (e∆Zt − 1). (3.3)

We can represent this equation by the form;

Xt −Xt− = v(Xt−) · [∆Zt + (e∆Zt − 1−∆Zt)], (3.4)

and from this difference equation, we can derive SDE (1.2) having the driving process (1.3):

dXt = v(Xt−)[dZt + (e∆Zt − 1−∆Zt)].

For the solution Xt of this SDE, we can say the absolute continuity, and the existence of density
function of Xt under some, a little complicated conditions.
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TABLE 2. Price Amplitudes of Anchullsu Reach. and Daiyoung Package.
Feb. 9th, A.M. 11:12:14 - 11:14:30, 2009

Price of Amplitude for Difference of Price of Amplitude for Difference of
Stock Day Initial Price Amplitude Stock Day Initial Price Amplitude
9,110 2.71 % 0.12 % 310 10.71 % 1.78 %
9,100 2.59 % 0.45 % 305 8.93 % 1.79 %
9,060 2.14 % 0.11 % 300 7.14 % 1.78 %
9,050 2.03 % 0.11 % 295 5.36 % 1.79 %
9,040 1.92 % 0.12 % 290 3.57 % 1.78 %
9,030 1.80 % 0.11 % 285 1.79 % 1.79 %
9,020 1.69 % ... 280 0.00 % ....
..... .... ... ... .... ....

The solution of this SDE can be represented as

Xt = X0 +
∫ t

0
bδv(Xs−)ds +

∫ t

0
v(Xs−)

∫

|z|<δ
zÑp(dz, ds)

+
∫ t

0
v(Xs−)

∫

|z|≥δ
zNp(dz, ds) +

∫ t

0
v(Xs−)

∫

|z|<δ
(ez − 1− z)Np(dz, ds)

+
∫ t

0
v(Xs−)

∫

|z|≥δ
(ez − 1− z)Np(dz, ds)

= X0 +
∫ t

0
bδv(Xs−)ds +

∫ t

0
v(Xs−)

∫

|z|<δ
zÑp(dz, ds) (3.5)

+
∫ t

0
v(Xs−)

∫

|z|<δ
(ez − 1− z)[Ñp(dz, ds)− ν(dz)ds]

+
∫ t

0
v(Xs−)

∫

|z|≥δ
(ez − 1− z)Np(dz, ds) +

∫ t

0
v(Xs−)

∫

|z|≥δ
zNp(dz, ds)

= X0 +
∫ t

0
bδv(Xs−)ds +

∫ t

0
v(Xs−)

∫

|z|<δ
(ez − 1− z)ν(dz)ds

+
∫ t

0
v(Xs−)

∫

|z|<δ
(ez − 1)Ñp(dz, ds) +

∫ t

0
v(Xs−)

∫

|z|≥δ
(ez − 1)Np(dz, ds).
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In real stock markets, the amplitudes of movements of stock prices are restricted. Thus we
take our basic asset model as a solution of SDE;

St = S0 +
∫ t

0
v(Ss−)

∫

|z|<δ
(ez − 1)Ñp(dz, ds) (3.6)

+
∫ t

0
v(Ss−)[bδ +

∫

|z|<δ
(ez − 1− z)ν(dz)]ds.

Now, we can assume that St is decomposable and H2-semimartingale, i.e., St has the form
of St = Mt + At, where Mt is a L2-(local) martingale and At is a predictable process of
finite variation with

∫ T
0 |dAs| ∈ L2(P ). We know that L2-spaces are natural to the theory of

stochastic integration. Further, we assume that our model is a Markov process because we need
the existence of density function, and this existence guarantee the study of option pricing and
hedging. Also, our model disregard and omit the big-jump part of (3.5) to use the results and
methods prior works easily(c.f. [7], [11]).

Our model is more reasonable one if we think the asset prices of daily data, or think the data
of at least one more times in a day because many stock markets limit the amplitude of jump in
a day and thus we disregard the big-jump part. Further, we will not think about the interest rate
for simplicity in the following. Thus, this model is more useful in the short space of time by
this meaning.

3.1. Minimum Martingale Measure. Let P and Q be two equivalent martingale measure,
Then the Radon-Nikodym derivative GT := dQ/dP is in L1(dP ). We define the process Gt

as
Gt := EP [dQ/dP |Ft], 0 ≤ t ≤ T,

taking the right continuous version. To avoid signed measure, we assume that Q is nonnegative
and local equivalent martingale measure for St such that Q ≈ P on FT in the sense of [5] and
[10], i.e., St is a local martingale under Q(c.f. [7], [10]). Then the process Gt is a uniformly
integrable P -martingale, and we get;

Gt := 1 +
∫ t

0
ψsdMs,

from a version of the Martingale Representation Theorem, where ψ(> −1) is predictable
process such that

EP [
∫ τn

0
ψ2

sd[M, M ]s < ∞,

where {τn}∞n=0 are a sequence of stopping times converging to T .
Thus, because P (Gt > 0, t ∈ [0, T ]) = 1, if we put

Ψt := ψt/Gt−,

then Ψt(> −1) is M -integrable. Hence we can think that Gt is the solution of SDE

dGt = Gt−ΨtdMt,
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where Ψ1
t is predictable process such that

EP [
∫ τn

0
Ψ2

sd[M, M ]s < ∞.

Therefore, for an equivalent martingale measure Q∗ such that G∗
T := dQ∗/dP , if we put

G∗
t := exp{−

∫ t

0
ΨsdMs − 1

2

∫ t

0
Ψ2

sd < S >s}, 0 ≤ t ≤ T,

where

dMt = v(St−)
∫

U
(ez − 1)Ñp(dz, dt),

d < S >t = v(St−)bδdt + v(St−)
∫

|z|<δ
(ez − 1− z)ν(dz)dt,

then, from the Itô formula, we get that

G∗
t := 1 +

∫ t

0
G∗

s−ΨsdSs,

which shows that G∗
t is a nonnegative square-integrable martingale (by Theorem of Exponential

Formula for Continuous Processes). Thus, from the Proposition 2.5, the equivalent measure Q∗
is minimal martingale measure which is equivalent to given measure P . Thus we can define
the existence and uniqueness of minimal martingale measure Q∗ in our model.

4. HEDGING OF OPTION

Let u(t, St) := EQ∗ [H(ST )|Ft]. Then u(t, St) is a (local) martingale with respect to (min-
imal martingale measure) Q∗. From the definition of u(t, St), we can assume that u(t, St) is
C1,2-function on [0, T ]×R+. Thus from the Itô formula, we get that:

Lemma 4.1. u(t, St) can be expanded by Itô formula as following;

u(t, St) = u(0, S0) +
∫ t

0
∂su(s, Ss)ds (4.1)

+
∫ t

0

∫

U
[u(s, ezv(Ss−))− u(s, Ss)− ∂xu(s, Ss)zv(Ss−)]ν(dz)ds

+
∫ t

0

∫

U
[u(s, ezv(Ss−))− u(s, Ss)]Ñp(dz, ds).

Proof. From the definition of u(t, St) := EQ∗ [H(ST )|Ft], we induce that u(t, St) is a (local)
martingale. Further, we can deduce that u(t, x) is C1,2-function on [0, T ] × R+. Thus, from
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the Itô formula, we obtain for the Markov semimartingale St represented by (3.6) as following;

u(t, St) = u(0, S0) +
∫ t

0

∂

∂s
u(s, Ss)ds

+
∫ t

0

∂

∂x
u(s, Ss)

∫

U
(ezv(Ss−)− v(Ss−)− zv(Ss−))ν(dz)ds

+
∫ t

0

∫

U
[u(s, Ss− + ∆Ss)− u(s, Ss)−

∂

∂x
u(s, Ss)(ezv(S−s)− v(Ss−))]N̂p(dz, ds)

+
∫ t

0

∫

U
[u(s, Ss− + ∆Ss)− u(s, Ss)]Ñp(dz, ds).

From the fact: ∆St = St − St− = v(St−)(e∆Zt − 1), we get

St− + ∆St = St− + v(St−)(e∆Zt − 1)

= v(St−)e∆Zt + [St− − v(St−)].

From basic assumption for function v, if ∆St → 0, then we can get v(St−) → St−. Thus we
get the result. ¤

From this proposition, we get following result:

Theorem 4.2. Suppose that our option H is in L2(P ). If the decomposition

Vt = V0 +
∫ t

0
πH

s dSs + LH
t , 0 ≤ t ≤ T

exists, we get the local optional strategy is given by πt = D(t, St), where

D(t, x) =

∫
U (ezv(x)− v(x))[u(s, ezv(x))− u(t, x)]ν(dz)∫

U (ezv(x)− v(x))2ν(dz)
, (4.2)

where U = {z||z| ≤ δ}.

Proof. From the Itô formula for u(t, St), we can calculus quadratic variation d[S, S]t and the
joint quadratic variation d[V, S]t by the bracket theory of jump-type semimartingale, where
Vt = EQ∗ [H(ST )|Ft], 0 ≤ t ≤ T , as following:

d[S, S]t = d[
∫ t

0
v(St−)

∫

U
(ez − 1)Ñp(dz, dt),

∫ t

0
v(St−)

∫

U
(ez − 1)Ñp(dz, dt)]

= d{
∫ t

0

∫

U
[v(Ss−)(ez − 1)]2Ñp(dz, dt)},

because the quadratic variation is 0 as following;

[
∫ t

0
v(Ss−){bδds +

∫

|z|<δ
(ez − 1− z)ν(dz)}ds]t = 0,
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and

d[V, S]t = d[
∫ t

0

∫

U
[u(s, Ss− + ∆Ss)− u(s, Ss)]Ñp(dz, ds),

∫ t

0
v(Ss−)

∫

U
(ez − 1)Ñp(dz, ds)]

= d[
∫ t

0

∫

U
[u(s, ezv(Ss−))− u(s, Ss)]Ñp(dz, ds),

∫ t

0
v(Ss−)

∫

U
(ez − 1)Ñp(dz, ds)]

=
∫

U
v(St−)(ez − 1)[u(t, ezv(St−))− u(t, St)]ν(dz),

because of the joint quadratic variation of
∫ t

0
∂su(s, Ss)ds +

∫ t

0

∫

U
[u(s, ezSs−)− u(s, Ss)− ∂xu(s, Ss)zv(Ss−)]ν(dz)ds

and ∫ t

0
v(Ss−)[bδds +

∫

|z|<δ
(ez − 1− z)ν(dz)]ds

is 0. i.e.,

[
∫ t

0
∂su(s, Ss)ds +

∫ t

0

∫

U
[u(s, ezv(Ss−))− u(s, Ss)− ∂xu(s, Ss)zv(Ss−)]ν(dz)ds,

∫ t

0
v(Ss−){bδds +

∫

|z|<δ
(ez − 1− z)ν(dz)}ds] = 0.

Thus, from the jump-type version theory Proposition 2.7, we get the result. ¤
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