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AN IMPULSIVE STAGE-STRUCTURED OPTIMAL CONTROL

PROBLEM AND OPTIMAL HARVEST STRATEGY OF

PACIFIC COD, GADUS MICROCEPHALUS, IN THE SOUTH

KOREA

Giphil Cho, Yong Dam Jeong, Sangil Kim, and Il Hyo Jung∗

Abstract. We consider an optimal control problem for an impulsive
stage-structured model involving ordinary differential equations with im-

pulsive values of initial conditions in the next year. The main goal is to

maximize a profit of the catch of Pacific cod in the South Korea through
optimal harvest strategy as a control of adult cod. We established neces-

sary conditions for the optimal harvest control using idea of Pontryagin’s

maximum principle. The optimal harvest strategy is to numerically solve
the equation by using an iterative method with the Runge-Kutta method.

Finally, we compare a monthly average of fishing mortality of Pacific cod

from 2013 to 2017 with monthly fishing mortality for result obtained op-
timal harvest strategy.

1. Introduction

According to the National Institute of Fisheries Science, the catch of the
coastal water fisheries in the South Korea has been the lowest in 44 years. For
reasonable fisheries management, we have turned to a management plan that
restricts the amount of catches, such as Total allowable catch strategy. Re-
cently, advanced countries on fisheries research have been using bio-economic
models to present directions of fisheries management. Therefore, it is neces-
sary to establish a theoretical and methodological framework of fisheries policy
management by making practical application to the fisheries management field.

Owing to the small economic value of juvenile population for some creatures,
only adult population is usually harvested and utilized. Song and Chen[1] con-
sidered stage-structured and harvest model of single species having harvest effort
is constant or variable or periodic. Jerry and Rassi[2], and Smith[3, 4] examined
a structured fishing models, basically displaying the two stages of ages of a fish
population, which are in our case juveniles and adults. Chakraborty et al.[5]
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consider a prey-predator model with stage structure of size for juvenile and
adult. In these paper, the rate of transformation of the adult is proportional to
the density of existing juvenile with proportionality constant. But it is difficult
to use general juvenile-adult model for fish species that spawn only once each
year because individual of the juvenile stage transform directly to the adult
stage. Therefore, we consider an impulsive stage-structured model involving or-
dinary differential equations and impulse values for initial conditions can solve
this problem.

There is little fisheries research about an optimal harvest strategy for an
impulsive stage-structured model. In related to optimal control of impulsive
model. Recently, Miller and Rubinovich [6] studied optimal impulse control
problems with a restricted number of impulses and Ding[7] set up the mathe-
matical framework with the optimal control of hybrid ODE system when applied
to optimal control of treatment to maximize disease-free ticks and minimize in-
fected ticks. Here we focus on the monthly pattern of price for Pacific cod to
find the best strategy to maximize profit of the catch. The idea of Pontrya-
gin’s Maximum Principle[8] was required to find the necessary conditions for
numerical simulating optimal harvest strategy.

The objective of this paper is to propose an optimal harvest strategy max-
imizing profit of the catch for Pacific cod having a different price per month.
Here we consider an impulsive stage-structured model including juvenile and
adult stage. Secondly, we find a necessary condition of optimal harvest strat-
egy. Finally, we compare a monthly average of fishing mortality of Pacific cod
from 2013 to 2017 and obtained monthly fishing mortality for optimal harvest
strategy.

2. Optimal control problem

In the model, we divide to stages into juvenile and adult individuals according
to maturity and catchable stock. Here, our state variables are defined as follows:

• B1,n(t) : biomass density of juvenile cod in n-th year,
• B2,n(t) : biomass density of adult cod in n-th year.

Because the functional form of the harvest is generally considered using the
phrase catch-per-unit-effort(CPUE) hypothesis[9] to describe an assumption,
the harvest control is expressed as a product of fishing effort and catchability
coefficient(α). Here we propose an optimal control problem of the pacific cod
with an impulsive stage-structured model.

dB1,n(t)

dt
= (g1 −M1)B1,n(t),

dB2,n(t)

dt
= (g2 − (M2 + αun(t))B2,n(t)−DMB

2
2,n(t),

B1,n+1(n+ 1) = fR
W1

W2
B1,n(n+ 1),

B2,n+1(n+ 1) = B1,n(n+ 1) +B2,n(n+ 1),

(1)
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where n = 0, 1, · · · , N . αun(t)B2,n(t) represents the harvest of Pacific cod
as a control variable un(t) represents the fishing effort at time t ∈ [n, n + 1].
gi and Mi are the growth rate and natural mortality of juvenile and adult
stage, respectively. DM and fR are density dependent mortality and effective
fecundity of adult stage. W1 and W2 are average of weights of the individual
for the juvenile and adult states having a non-zero constant derived by von
bertalanffy growth equation. Variables of the optimal control model(1) are
listed and defined in Table 1. The goal is to show a time-dependent harvest
strategy to maximize the profits of the catch. In order to derive the optimal
harvest strategy, we need to find a necessary condition with respect to the
control un(t).
We define the control set as

UH =
{

(u0(t), u1(t), · · · , uN (t)) : un is Lebesgue measurable,

t ∈ [n, n+ 1] for n = 0, · · · , N
}
.

We want to maximize the following objective functional that mean the profit of
the catch.

J (u) =

N∑
n=0

∫ n+1

n

C1(t)αun(t)B2,n(t)− C2u
2
n(t)dt (2)

+ C3(B1,N (N + 1) +B2,N (N + 1)),

subject to model (1). C1(t) represents the positive step function with respect to
monthly price unit biomass and C2 is a cost unit effort having non-zero constant.

Theorem 2.1. Let B∗1,n(t) and B∗2,n(t) be optimal state solutions with asso-
ciated optimal control u∗n subject to model (1) for n = 0, · · · , N . Then, there
exists adjoint variables λi,n(t), for i = 1, 2 satisfying

λ
′

1,n(t) = (M1 − g1)λ1,n(t),

λ
′

2,n(t) = −C1(t)αun(t) + (M2 − g2 + αun(t)− 2DMB2,n(t))λ2,n(t),

for t ∈ [n, n+ 1], n = 0, · · · , N and with transversality conditions

λ1,n((n+ 1)) = λ2,n+1(n+ 1),

λ2.n((n+ 1)) = fR
W1

W2
λ1,n+1(n+ 1) + λ2,n+1(n+ 1),

for n = 0, · · · , N − 1 and

λ1,N ((N + 1)) = C3,

λ2,N ((N + 1)) = C3.

Furthermore, the optimal controls u∗n satisfy

u∗n(t) = α
B∗2,n(t)(C1(t) + λ2,n(t))

2C2
,

for n = 0, · · · , N .
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Proof. Denote Xi,n(Bi,n(t), un(t)) := B′i,n(t) and Yn(B2,n(t), un(t)) :=

C1(t)αun(t)B2,n(t)−C2u
2
n(t). Let λi,n(t) be a piecewise differentiable function

on [n, n+ 1] to be determined. By the Fundamental Theorem of Calculus,

N∑
n=0

(∫ n+1

n

d

dt

[ 2∑
i=1

λi,n(t)Bi,n(t)

]
dt+

2∑
i=1

λi,n(n)Bi,n(n)− λi,n(n+ 1)Bi,n(n+ 1)

)
= 0.

We add zero terms to the objective functional and then,

J (u) =

N∑
n=0

(∫ n+1−

n

C1(t)αun(t)B2,n(t)− C2un(t)2dt

)
+ C3

(
B1,N (N + 1) +B2,N (N + 1)

)
=

N∑
n=0

(∫ n+1

n

Yn(B2,n(t), un(t)) +
d

dt

[ 2∑
i=1

λi,n(t)Bi,n(t)

]
dt

)

+

N∑
n=0

( 2∑
i=1

λi,n(n)Bi,n(n)− λi,n(n+ 1)Bi,n(n+ 1)

)
+ C3

(
B1,N (N + 1) +B2,N (N + 1)

)
=

N∑
n=0

(∫ n+1

n

Yn(B2,n(t), un(t)) +

2∑
i=1

[
λ′i,n(t)Bi,n(t) + λi,n(t)B′i,n(t)

]
dt

)

+

N∑
n=0

( 2∑
i=1

λi,n(n)Bi,n(n)− λi,n(n+ 1)Bi,n(n+ 1)

)
+ C3

(
B1,N (N + 1) +B2,N (N + 1)

)
.

We first consider the boundary terms for biomass.

N∑
n=0

[ 2∑
i=1

(
− λi,n(n+ 1)Bi,n(n+ 1) + λi,n(n)Bi,n(n)

)]

=

2∑
i=1

[(
− λi,0(1)Bi,0(1) + λi,0(0)Bi,0(0)

)
+

(
− λi,1(2)Bi,1(2) + λi,1(1)Bi,1(1)

)
+ · · ·+

(
− λi,N (N + 1)Bi,N (N + 1) + λi,N (N)Bi,N (N)

)]
. (3)

For n = 0, · · · , N − 1, we choose

λ1,n(n+ 1) = λ2,n+1(n+ 1),

λ2,n(n+ 1) = fR
W1

W2
λ1,n+1(n+ 1) + λ2,n+1(n+ 1).
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Then, the boundary terms (3) become

2∑
i=1

(
λi,0(0)Bi,0(0)− λi,N (N + 1)Bi,N (N + 1)

)
.

We rewrite the objective functional as

J (u) =

N∑
n=0

(∫ n+1

n

Yn(B2,n(t), un(t)) +

2∑
i=1

λ′i,n(t)Bi,n(t)

+

2∑
i=1

λi(t)Xi,n(Bi,n(t), un(t))dt

)

+

2∑
i=1

(
λi,0(0)Bi,0(0)− λi,N (N + 1)Bi,N (N + 1)

)
+ C3

(
B1,N (N + 1) +B2,N (N + 1)

)
.

Let u∗ ∈ UH be the optimal control and B∗i be the corresponding optimal
state solutions. Let u∗ + εh ∈ UH for ε > 0, where h = (h0, h1, · · · , hN ) and
hn ∈ L∞[n, n + 1] for n = 0, 1, · · · , N . In addition, let Bεi,n := Bi,n(u∗n + εhn)
be corresponding solutions of the model for n = 0, 1, · · · , N . Then, we compute
the directional derivative of the objective functional J(u∗) with respect to u∗

in the direction of h. Since J(u∗) is the maximum value, we have

0 ≥ lim
ε→0+

J(u∗ + εh)− J(u∗)

ε

= lim
ε→0+

1

ε

N∑
n=0

∫ n+1

n

[(
Yn(Bε2,n(t), u∗n(t) + εhn)− Yn(B∗2,n(t), u∗n(t))

)

+

2∑
i=1

λi,n(t)

(
Xi,n(Bεi,n(t), u∗n(t) + εhn)−Xi,n(B∗i,n(t), u∗n(t))

)

+

2∑
i=1

λ′i,n(t)

(
Bεi,n(t)−B∗i,n(t))

)]
dt

+

2∑
i=1

[
λi,0(0)

(
Bεi,0(0)−B∗i,0(0))

)
− λi,N (N + 1)

(
Bεi,N (N + 1)−B∗i,N (N + 1)

)]
+ C3

( 2∑
i=1

Bεi,N (N + 1)−B∗i,N (N + 1)

)
.
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We denote
Bεi,n −B∗i,n

ε
→ ψi,n(t) as ε → 0 and ψi,n(0) = 0. By using the

chain rule,

Bεi,n(u∗n + εhn)−B∗i,nu∗n = (Bεi,n −B∗i,n)(u∗n + εhn) +B∗i,n(u∗n + εhn − u∗n).

Then, we have

0 ≥
N∑
n=0

∫ n+1−

n

[
(Yn)Bi,n(B∗i,n, u

∗
n)ψi,n(t) + (Yn)un(B∗i,n, u

∗
n)hn(t)

+

2∑
i=1

λi,n(t)

(
(Xi,n)Bi,n

ψi,n(t)− (Xi,n)un
hn(t)

)

+

2∑
i=1

λ′i,n(t)ψi,n(t)

]
dt

+

2∑
i=1

(
λi,0(0)ψi,n(0)− λi,N (N + 1)ψi,n(N + 1)

)

+ C3

2∑
i=1

ψi,n(N + 1).

By combining the terms involving ψi,n and hn, we have

0 ≥
N∑
n=0

∫ n+1−

n

[
((Yn)Bi,n

(B∗i,n, u
∗
n) +

2∑
i=1

λi,n(t)(Xi,n)Bi,n

+

2∑
i=1

λ′i,n(t))ψi,n(t) + ((Yn)un
(B∗i,n, u

∗
n) +

2∑
i=1

λi,n(t)(Xi,n)un
)hn(t)

]
dt

+

2∑
i=1

(
C3 − λi,N (N + 1)

)
ψi,n(N + 1).

Thus, we choose λi,n to solve

λ′i,n(t) = −(Yn)Bi,n
(Bi,n, un)(t)− λi,n(t)(Xi,n)Bi,n

(t).

Therefore, we obtain

λ
′

1,n(t) = (M1 − g1)λ1,n(t),

λ
′

2,n(t) = −C1(t)αun(t) + (M2 − g2 + αun(t)− 2DMB2,n(t))λ2,n(t),

λ1,N (N + 1) = C3,

λ2,N (N + 1) = C3,
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Figure 1. Average monthly price of Pacific cod from 2013 to 2017 in
South Korea

for t ∈ [n, n+ 1], where n = 0, 1, · · · , N . Hence, we obtain

0 ≥
N∑
n=0

∫ n+1−

n

[
((Yn)un(B∗i,n, u

∗
n) +

2∑
i=1

λi,n(t)(Xi,n)un)

]
hn(t)dt

=

N∑
n=0

∫ n+1−

n

[
C1(t)αB∗2,n(t)− 2C2u

∗
n(t) + αB∗2,n(t)λ2,n(t)

]
hn(t)dt.

Since hn is arbitrary for n = 0, 1, · · · , N , which implies that

u∗n(t) =
C1(t)αB∗2,n(t) + αB∗2,n(t)λ2,n(t)

2C2
.

�

3. Numerical Simulation

We obtain parameters with respect to growth rate, natural morality, and
effective fecundity of Pacific cod in Jung et al.[10]. Since they estimated pa-
rameters of Pacific cod by age, we adjusted the value of parameters of juvenile
and adult stage as a mean value. The data for the monthly catch and price of
Pacific cod have been obtained from Ministry of Oceans and Fisheries. Figure 1
shows an average monthly price of Pacific cod from 2013 to 2017 in South Ko-
rea. We assumed that the density dependent mortality(DM ) and catchability
coefficient(α) are 10−6 and 1, respectively. Table 1 is the list of all parameters
used in our numerical simulation.

In order to simulate optimal harvest strategy, we assumed that a cost unit
effort(C2) and weight of terminal term of objective functional are 2.74 billion
won and 1. Figure 2(a) shows the optimal harvest control from 2013 to 2017
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Table 1. Parameters used in optimal control model (1)

Parameter Description value
g1 average growth rate of juvenile 0.4246yr−1

g2 average growth rate of adult 0.0463yr−1

M1 natural mortality of juvenile 0.3788yr−1

M2 natural mortality of adult 0.0343yr−1

DM density dependent mortality 10−6

fR average effective fecundity of adult 1820
W1 average weight of an individual of juvenile 15.1g
W2 average weight of an individual of adult 1.467kg
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Figure 2. (a) Optimal harvest control from 2013 to 2017 when our ini-
tial condition (B1,0(0), B2,0(0)) = (7960, 28250) metric tons. (b) Monthly

average fishing mortality and monthly average optimal harvest strategy of

Pacific cod from 2013 to 2017.

when our initial condition (B1,0(0), B2,0(0)) = (7960, 28250) metric tons. Opti-
mal harvest strategy is almost the same pattern every year. It is best to fishing
of the Pacific cod in January and to reduce fishing continuously until just be-
fore December. Figure 2(b) show estimated monthly average fishing mortality
and monthly average optimal harvest strategy of Pacific cod from 2013 to 2017.
This result represent the opposite result about estimated monthly average op-
timal harvest strategy and estimated monthly average fishing mortality using
real catch data, which is the largest catch in December. Although it is the the-
oretical harvest strategy, it is necessary to change the present fishing strategy
that has the opposite result from the optimal harvest strategy. In this paper,
although we have proposed an optimal harvest strategy for Pacific cod only, we
believe that our approach and method can be successfully extended to other
fish species.
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