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Abstract 
 

With the development of the NB-IoT (Narrow band Internet of Things) and smart cities, 
coupled with the emergence of smart smoke sensors, new requirements and issues have been 
introduced to study on the deployment of sensors in large spaces. Previous research mainly 
focuses on the optimization of wireless sensors in some monitoring environments, including 
three-dimensional terrain or underwater space. There are relatively few studies on the 
optimization deployment problem of smart smoke sensors, and leaving large spaces with 
obstacles such as libraries out of consideration. This paper mainly studies the deployment issue 
of smart smoke sensors in large spaces by considering the fire probability of fire areas and the 
obstacles in a monitoring area. To cope with the problems of coverage blind areas and 
coverage redundancy when sensors are deployed randomly in large spaces, we proposed an 
optimized deployment strategy of smart smoke sensors based on the PSO (Particle Swarm 
Optimization) algorithm. The deployment problem is transformed into a multi-objective 
optimization problem with many constraints of fire probability and barriers, while minimizing 
the deployment cost and maximizing the coverage accuracy. In this regard, we describe the 
structure model in large space and a coverage model firstly, then a mathematical model 
containing two objective functions is established. Finally, a deployment strategy based on PSO 
algorithm is designed, and the performance of the deployment strategy is verified by a number 
of simulation experiments. The obtained experimental and numerical results demonstrates that 
our proposed strategy can obtain better performance than uniform deployment strategies in 
terms of all the objectives concerned, further demonstrates the effectiveness of our strategy. 
Additionally, the strategy we proposed also provides theoretical guidance and a practical basis 
for fire emergency management and other departments to better deploy smart smoke sensors 
in a large space. 
 
 
Keywords: NB-IoT, optimized deployment strategy, smart smoke sensors, large space, 
intelligent optimization algorithm, coverage accuracy, deployment cost 
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 1. Introduction 

With the continuous emergence and development of smart cities, complex 3D (Three-
Dimensional)   urban environments have brought new issues and challenges in the study of 
WSNs (wireless sensor networks)  deployment [1]. WSNs are an essential parts of smart 
cities construction, and deploying sensors in some monitoring areas is a challenging work[2]. 
The progress of sensors deployment was primarily motivated by applications in military such 
as battlefield surveillance. Nevertheless, they have been being applied to many industrial and 
civilian application areas currently, which includes the monitoring of industrial process, 
underwater environmental monitoring and residential fire monitoring. As a fundamental 
problem in WSNs, deploying sensors in a certain mpnitoring area has caught many reseachers’ 
great attention in the past years [3]. In general, the number of sensor nodes and their final 
deployment positions in the monitoring areas will affect the topological structure of a WSN, 
which will also determine factors involving the coverage ratio, deployment cost and network 
life. In a monitoring scene, the efficiency of a WSN depends mainly on the deployment 
strategy of sensors. Most of researchers at home and abroad have gained a number of 
achievements research on the deployment strategy of sensors[4]. The deployment problem is 
formulated as a MOPT problem two or more conflicting objectives in many researches, the 
aim of the optimization process is to obtain reasonable trade-offs between the two 
objectives[5]. However, while sensors are used in greater numbers for residential and 
supermarket environments, the optimal deployment strategies become increasingly 
significiant[6]. While the coverage quality and network connectivity have been optimized in 
many literature, the most scenes of deployment only considerre the terrestrial two-dimensional 
networks. Unfortunately, most of studies cannot be directly applied to 3D networks[7]. How 
to reduce the network energy consumption and increase the network lifetime to obtain a good 
coverage quality is a significiant problem in the process of deploying sensors, and we can 
model it as the MOPs (Multi-objective Optimization Problems). The purpose of solving MOPs 
with multiple conflicting optimization objectives is to get an approximation of the Pareto 
front[8]. MOPs should be provided with two or more nondominated solutions involving 
different objective functions. The deployment of sensors in a large space satisfying two or 
more objective functions is a challenging problem[8]. As a result, multi-objective method is 
always the best way in cases dealing with two or more conflicting objectives[7]. 

The deployment problem of smart smoke sensors is a special type of problem in fire 
emergency management. The nodes are distributed on the upper surface of this three-
dimensional monitoring environment to achieve the purpose of detecting the space. The 
deployment problem of smart smoke sensors in large spaces is close to practical application 
scenarios and has a certain degree of complexity, Therefore, there are few researches on this 
fields. Based on the above analysis, this paper develops an optimized deployment strategy 
based on an intelligent algorithm, and the deployment problem of smart smoke sensors is 
modeled as the MOPs problem with two objective functions, namely, the deployment cost and 
the coverage accuracy. The goal of the deployment process is to develop a reasonable trade-
offs between the two objectives we designed. An extensive number of siumlation experiments 
was conducted systematically to demonstrate the performance of our proposed deployment 
strategy.  

The main contributions of this study are summarized as the following three parts: 
1) We first design a structure model in a large space and propose a coverage model; Then 

we establish a mathematical model including two optimal objectives: the coverage accuracy 
and the deployment cost. By maximizing the coverage accuracy and minimizing the 
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deployment cost, the overall coverage quality of smart smoke sensors is improved; 
2) This paper develops an optimized deployment strategy of smart smoke sensors that are 

suitable for large spaces, which considers the probability of fire areas and in the presence of 
some random obstacles in the monitoring area; 

3) The proposed strategy is optimized by the PSO algorithm, and compared with the 
traditional uniform deployment strategy under different parameter settings. Simulation results 
show the better performance of our developed optimized deployment strategy. 

The organization structure of this paper is desingned as follows. The related work including 
our research is described in Section 2. Then, we design the structure model in Section 3, as 
well as the mathematical model, including two objective functions. The PSO algorithm to 
optimize our developed optimizing deployment strategies is described in Section 4. And in 
Section 5, we show the simulation experiments and detail analysis. Finally, the conclusions 
and future work are discussed in Section 6. 

2. Related Work 
In this paper, we describe the related work involving the deployment strategies of sensors in 
some monitoring area. According to the placement of deployed sensors, deployment strategies 
can be classified into random and deterministic deployment[2]. At present, many useful 
deployment strategies for monitorng the specific spaces have been proposed in literatures[9]. 
Many researches has mainly focused on sensors deployment schemes in a two-dimensional 
monitoring environment, Most of which aim at obtaining high coverage ratio and network 
connectivity, minimizing the deployment cost and energy consumption[10]. Therefore, 
optimal sensor nodes arrangement is a necessary problem for some essential objectives in the 
process of deployment, such as cost, coverage ratio, lifetime and connectivity[11]. Moreover, 
scholars also have performed a comparative study on the different node deployment schemes 
in more actual environment monitoring systems[12]. This section describes the previous work 
related to sensors deployment strategies. The work varies in terms of the sensors’ actual 
application scenario, deployment objectives and strategies, and the study on the deployment 
strategy of sensors is generally divided into three types from the perspective of monitoring 
areas. 

2.1 Sensors Deployment Strategy Research for 3D Terrain Coverage 
The sensors deployment problem involving the scene of 3D surface have been studied in many 
literatures. The development of the concept of smart cities and the emergence of 3D urban 
terrain data have brought new requirements and challenges to the research on deployment of 
wireless sensor networks. The authors in [1] study the deployment problem of heterogeneous 
and directional wireless sensor networks in 3D smart cities. The deployment problem is 
transformed into a multi-objective optimization problem (MOP) based upon three-dimensional 
urban terrain datas, and then a distributed parallel multi-objective evolutionary algorithms 
(MOEAs) are designed to solve this problem. The authors both in [14-15] study the node 
deployement peoblem on 3D terrian, and the aim is to achieve the optimal monitoring of 3D 
terrian. Boufares[14] proposed a distributed deployment algorithm on the basis of an improved 
virtual force strategy, which is effective in improving the coverage ratio of different complex 
terrain surface function models while ensuring the connectivity of sensors network and 
lowering the deployment cost. While the paper[15] developed an uncertain comprehensive 
coverage model and a 3D probabilistic sensing model, and an uncertain non-probabilistic 
fusion operator is adopted to merge the occluded coverage regions in this model. The proposed 
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deployment scheme is more suitable for practical security monitoring spaces and it has more 
practical importance. Finally, multi-objective optimization algorithm based on deployment 
approaches are utilized to solve the 3D Terrain deployment problem. In paper[16], the authors 
proposed a special deployment approach to achieve better sensor deployment effect in terms 
of coverage rate and the network connectivity in three-dimensional (3D) terrain scenario. The 
developed deployment methos is combined the distributed particle swarm optimization (DPSO) 
algorithm with virtual force (VF) algorithm. However, the authors in [17] considered the 
border monitoring areas as an important concerns to conduct a task of sensors deployment, 
and the authors proposed a hybrid deployment schemes consisting of multimedia wireless 
sensor networks and marine wireless networks to detect a border area in the deployment spaces. 

2.2 Sensor Nodes Deployment Optimization in UWSNs 
The application of wireless sensor networks (WSNs) has been employed gradually in 
underwater application environments as a significiant field in the study of wireless sensor 
networks in the past year. Underwater wireless sensor network (UWSN) also has been being 
a novel research field[18]. Currently, the UWSNs have been applied to many fields including 
environment exploration, military surveillance and the collection of sensing data. The 
optimizing deployment of sensors in UWSNs is a significiant aspect in the real world; however, 
it is a difficult problem because of the uncertaion and complex underwater environment[19]. 
The authors in [19-20] study the deployment stratrgies and recent developmetn in UWSNs, 
which solving the exist of coverage holes on the basis of achieving the target of maximizing 
the coverage rate and energy balance.The paper [10] analyzes the impacts of deployment 
strategies on localization performances in a three-dimensional underwater sapce; the 
experimental results suggest that the regular tetrahedron deployment strategy performs better 
than the deployment strategy randomly, and the cube deployment strategy in improving the 
localization error and localization rate while obtaining satisfactory coverage qulity network 
connectivity. 

2.3 Sensor Nodes Deployment Optimization in Three-dimensional Full Space 
The three-dimensional full space mainly includes tall and complex indoor spaces such as 

unmanned supermarkets, unmanned warehouses, gymnasiums, etc. The authors in [12-13] 
partically studies the deployment problem of WSNs in an indoor environment, and design a 
node deployment algorithm of wireless sensor networks that applied to indoor space, which 
optimizes the deployment stratgy with better coverage quality through the method of 
experiment and comparison. The author of [21-22] realized the optimization of coverage, 
deployment cost and other goals by deploying sensor nodes on a two-dimensional plane and 
using intelligent optimization algorithms to find the optimal location of nodes. The comparison 
of experimental results suggests that the use of multiple objectives evolutionary algorithms is 
significantly better than genetic algorithms traditionally. Therefore, we can know that the 
previous studies used a multi-objective optimal approach to solve the node deployment 
problem from the above analysis. Although the above algorithm strategies can achieve a better 
coverage quality in terms of sensors deployment problem, more practical and significant issues 
have yet to be addressed[22]. The current research in this area is relatively ideal, and in the 
real environment, there will be more or less obstacles and fire areas with different fire 
probabilities, so there are still some shortcomings in the research of three-dimensional whole 
space. The existing studies on the deployment of WSNs in confined indoor spaces have not 
comprehensively considered various deployment application requirements and the 
interference of obstacles to wireless sensor signals, which leads to waste of sensor perception 
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and communication capabilities. It is evident that environmental obstacles and type can affect 
the computation of the network coverage rate[24]. Smart smoke sensors have been universally 
studied and developed in recent years[18]. Thus, compared with previous studies, this paper 
considers the sensor node deployment problem in a complex and tall dynamic space 
environment including a certain number of obstacles, also considers the situation that there are 
fire areas with different fire probabilities in the monitoring, and mainly deploys smart smoke 
sensor nodes not the wireless sensor nodes. For this purpose, this artical proposes an optimized 
deployment strategy to minimize the deployment cost while obtaining the optimal coverage 
accuracy. Maintaining a high coverage ratio and minimizing the network deployment cost are 
two conflicting essential problems concerned by service providers in the real world. The 
proposed strategy is well established in most cases[25]. 

3. Smart smoke sensor node deployment Model in large space 
In this section, we describe the coverage model, as well as introduce the objective functions 
need to be optimized, which includes the coverage accuracy and the deployment cost. And 
furthermore, we conclude the relevant constraints in the process of nodes deployment. Table 
1 presents the list of symbols used in this paper. 
 

Table 1. List of symbols used in the paper 
Symbol Description 
𝐿𝐿，𝑊𝑊 Length, width of the monitoring area 
𝐴𝐴𝑟𝑟 Monitoring area 
𝑆𝑆 The set of deploying smart smoke sensors 
𝑃𝑃 The set of fire area 
𝑂𝑂 The set of obstacles 
𝑛𝑛 The number of smart smoke sensors 
𝑚𝑚 Number of fire areas 
𝑘𝑘 The number of obstacles 

(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) Position coordinate of smart smoke sensors 
𝑑𝑑�𝑠𝑠𝑖𝑖 , 𝑝𝑝𝑗𝑗� Distance between smart smoke sensors and fire area 
(𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗) The location coordinates of fire area 
𝑉𝑉(𝑆𝑆,𝑃𝑃) Coverage perception probability of fire area 
𝛿𝛿𝑖𝑖𝑖𝑖 The state of coverage 
𝜏𝜏𝑖𝑖𝑖𝑖 The sensitivity of smart smoke node 

𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠𝑖𝑖 , 𝑝𝑝𝑗𝑗) The number of obstacles between 𝑆𝑆 and 𝑃𝑃 
𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  The Coverage rate 
𝑓𝑓𝐶𝐶𝐶𝐶 The Coverage Accuracy 

𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 The Depoyment Cost 
𝑃𝑃𝑑𝑑𝑠𝑠𝑖𝑖  The installation cost of a smart smoke sensor 
ℳ𝑠𝑠

𝑖𝑖  The maintenance cost of a smart smoke sensor 
𝐶𝐶𝑠𝑠𝑛𝑛 The economic cost of a smart smoke sensor 

3.1 The Structure Model in large space 
Assumed that the smart smoke sensors are scattered to the space upper surface, then initially 
form a connected network on this two-dimensional plane. Considering that there are obstacles 
and fire-prone areas in high space, we mesh the deployment area from the perspective of a 
two-dimensional plane. The fire areas and obstacles are randomly set according to the 
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probability of fire and the actual situation. The fire area and obstacles are set according to the 
actual characteristics of the large space. The considered scenario in our paper is shown in Fig. 
1. Where the red points are the deployed sensor nodes, the yellow dots represent the areas of 
fire, and the darker the color is, the greater the probability of fire. The rectangular blocks are 
obstacles that will have a certain impact on the coverage accuracy. When there is an obstacle 
between the fire area and the deployment node, it will affect the speed and concentration of 
smoke diffusion in the fire area, thus affecting the coverage accuracy of intelligent smoke 
sensors deployed near the fire area. Moreover, the greater the degree of obstruction to the fire 
area, the greater the impact on the performance of intelligent smoke detection. 

 

 
Fig. 1. The plane structure model of node deployment 

3.2 The coverage model 

3.2.1 Assumptions 
In the process of deployment, smart smoke sensors are placed to the optimal in the monitoring 
area so that fewer sensors can provide optimal coverage accuracy with lower network 
maintenance and management cost[26]. In our model, we put forward the following 
assumptions: 

 The monitoring area varied from a square shape to a rectangular shape of different sizes; 
 Each smart smoke sensor node has the same detection range of 𝑟𝑟. In the initial phase, 

the sensor nodes are deployed randomly in the monitoring area, the size of which is denoted 
as 𝐿𝐿 × 𝑊𝑊, and the number of smart smoke sensors is denoted as 𝑛𝑛; 

 There are some areas of fire 𝑃𝑃 with different fire probabilities in the deployment area. 
There are some obstacles 𝑂𝑂 in the monitoring area. 

3.2.2 Line of Sight (LOS) 
Assume that a sensor 𝑆𝑆, to cover a fire point 𝑃𝑃 on the large space, there should exist a line 
of sight (LOS) between 𝑆𝑆 and 𝑃𝑃, which means that the straight-line distance between them 
is not occluded by some obstacles; the visibility of this target point 𝑃𝑃 is equal to 1 in this case. 
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Otherwise, no line of sight (NLOS) [15] indicates that there are some obstacles between them; 
the visibility of this fire point p is equal to 0. The calculation expression is as follows: 

𝑉𝑉(𝑆𝑆,𝑃𝑃) = �
1, 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿

0, 𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁                              (1) 

3.2.3 Problem Description 
Let 𝐴𝐴𝑟𝑟 = 𝐿𝐿 ×𝑊𝑊 be a cross section in a complex high space including a certain number of 
fire areas and obstacles, given randomly 𝑛𝑛 smart smoke sensors in the target area 𝐴𝐴𝑟𝑟. The 
deployed sensor nodes are defined by 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛} , and each node has the same 
detection range 𝑟𝑟. While the points of fire are 𝑃𝑃 = (𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑚𝑚). Assume that there are 
some obstacles in the monitoring area, which can be described by 𝑂𝑂 = (𝑜𝑜1,𝑜𝑜2, … , 𝑜𝑜𝑘𝑘) . 
Furthermore, for any target point of fire 𝑝𝑝𝑗𝑗 in the monitoring, the Euclidean distance between 
sensor node 𝑠𝑠𝑖𝑖 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) and point of fire 𝑝𝑝𝑗𝑗 = (𝑥𝑥𝑗𝑗,𝑦𝑦𝑗𝑗) can be expressed by: 

𝑑𝑑�𝑠𝑠𝑖𝑖 ,𝑝𝑝𝑗𝑗� = ��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� + �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗�                           (2) 

For most parts, any points of fire 𝑝𝑝𝑗𝑗 in the deployment area need to meet the following 
conditions to be considered to be covered by the sensor node 𝑠𝑠𝑖𝑖: 

𝛿𝛿𝑖𝑖𝑖𝑖 = �
1, 𝑖𝑖𝑖𝑖 𝑑𝑑(𝑠𝑠𝑖𝑖 ,𝑝𝑝𝑗𝑗) ≤ 𝑟𝑟
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

                                 (3) 

𝛿𝛿𝑖𝑖𝑖𝑖 denotes that whether the fire area is covered by deployed nodes. 𝜏𝜏𝑖𝑖𝑖𝑖is defined as the 
sensitivity of smart smoke node 𝑠𝑠𝑖𝑖 to target node 𝑝𝑝𝑗𝑗. If there is no obstacle between the two, 
the sensitivity is 1. If there is an obstacle, the visibility of the monitored node will be reduced, 
the distance at which the smoke spreads will be longer so that the detection sensitivity will be 
reduced, and the calculation expression is: 

𝜏𝜏𝑖𝑖𝑖𝑖 = �
1, 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑉𝑉(𝑆𝑆,𝑃𝑃)
1+𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�𝑠𝑠𝑖𝑖,𝑝𝑝𝑗𝑗�

, 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                        (4) 

where 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠𝑖𝑖,𝑝𝑝𝑗𝑗) is the number of obstacles between the sensor and the fire area, 
which depends on the concept of adaptive LOS theory[15]. 

Furthermore, the multi-objective optimization problem can be transfromed into a linear 
function 𝑓𝑓  consisting of many objectives to be maximized for the problem considering 
constraints[27]. The objective function can be express by: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) = 𝛼𝛼𝑓𝑓1(𝑥𝑥) + 𝛽𝛽𝑓𝑓2(𝑥𝑥) +⋯+ 𝛾𝛾𝑓𝑓𝑖𝑖(𝑥𝑥)                         (5) 
where 𝑓𝑓𝑖𝑖(𝑥𝑥) is the objective function to be optimized for the problem by considering 𝛼𝛼 +

𝛽𝛽 + ⋯+ 𝛾𝛾 = 1. 

 

3.3 Optimization objectives 
There are two optimization objectives considered in the process of node deployment. The first 
is coverage accuracy maximization, and the second is total deployment cost minimization. 
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3.3.1 The coverage Accuracy 
The detection accuracy should be maintained to an optimal level in the problem of deployment. 
In this paper, we mainly consider the following main factors: the coverage rate, the sensitivity 
of the sensor and the presence of obstacles. First, the coverage rate of the smart smoke node 
𝑠𝑠𝑖𝑖 can be defined as: 

𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝>𝜑𝜑)
𝐿𝐿×𝑊𝑊

                                (6) 

where the calculation form is the ratio of the number of covered grids to the total number of 
grids, and 𝜑𝜑 is the coverage threshold value. 

where the coverage accuracy is the coverage ratio under the condition that the certain 
coverage ratio 𝑃𝑃𝑡𝑡ℎ is achieved. Then the coverage accuracy 𝑓𝑓𝐶𝐶𝐶𝐶 of the monitoring area is 
calculated as： 

�
𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≥ 𝑃𝑃𝑡𝑡ℎ

𝑓𝑓𝐶𝐶𝐶𝐶 = 𝛿𝛿𝑖𝑖𝑖𝑖 × 𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
                               (7) 

3.3.2 The Deployment Cost 
In the phase of sensor node deployment, we first should take into consideration the available 
budget. One of the deployment goals, from an economic point of view, is to reduce the cost 
while reaching a satisfactory detection performance according to the specification of the 
application [28]. In this paper, we mainly consider the number of sensor nodes we deployed 
in the monitoring area. We use 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 to represent the deployment cost function. 
Therefore, the deployment cost function value in our model can be defined as: 

   𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ (𝑃𝑃𝑑𝑑𝑠𝑠𝑖𝑖 +ℳ𝑠𝑠
𝑖𝑖 + 𝐶𝐶𝑠𝑠𝑛𝑛)𝑛𝑛

𝑖𝑖=1                           (8) 

Where 𝑃𝑃𝑑𝑑𝑠𝑠𝑖𝑖  represents the installation cost of the 𝑖𝑖 smart smoke sensor, 𝐶𝐶𝑠𝑠𝑛𝑛 represents 
the economic cost of a smart smoke sensor, ℳ𝑠𝑠

𝑖𝑖 represents the maintenance cost of the 𝑖𝑖 
smart smoke sensor after deployment. 

3.3.3 Constrains 
Based on the above description of relevant models and objective functions, the optimization 
problem solved can be described as: 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝐶𝐶𝐶𝐶
𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑠𝑠. 𝑡𝑡.𝑂𝑂, 𝑆𝑆,𝑃𝑃 ∈ 𝐴𝐴

(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖), (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗) ∈ 𝐴𝐴𝑟𝑟  
1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 𝑛𝑛 ∈ [2,50]

1 ≤ 𝑗𝑗 ≤ 𝑚𝑚,𝑚𝑚 ∈ [10,20] 

                                 (9)  

4. Proposed Methodology of Optimizing Deployment Problem 
In this section, we introduce the idea of the optimized deployment strategy of smart smoke 
sensors, and describe the PSO algorithm to deploy smart smoke sensors in a large space. 
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4.1 Proposed deployment strategy of Smart Smoke Sensor 

4.1.1 The design of node deployment strategy 
An optimial deployment strategy can improve the coverage quality of sensor networks and 
reduce deployment cost. As show in Fig. 2, the sensor node deployment phase includes the 
four following steps. 

 

 
Fig. 2. The flow of optimizing deployment strategy 

 

4.2 Node deployment method based on an intelligent optimization algorithm 
4.2.1 PSO algorithm 
In actual deployment scenarios, finding the optimal positions of sensor nodes so that the 
coverage accuracy is maximized and deployment cost is minimized are so challenging. The 
multi-objective optimization algorithm is a relatively suitable solution to achieve the minimum 
number of sensors and maximize the coverage accuracy.  

To date, various approaches including heuristics and approximation algorithms, have been 
used to solve the optimization deployment problem of sensor nodes in some actual 
environments[29]. In this paper, we choose the particle swarm optimization (PSO) algorithm 
that was mentioned in paper [29] to solve the deployment problem of smart smoke sensors in 
large spaces the we mentioned above the sections, and some parameters are improve to better 
optimize our objectives. It can be known that PSO algorithm faces the multimodal problem in 
most application-oriented sensors deployment scenarios. Therefore, the optimized deployment 
algorithm must track and observe the value of each peak in the actual application, as each peak 
may be the optimal peak that we need[6]. In general, the particle swarm optimization (PSO) 
algorithm initializes the solution set of the multi-objective problem that needs to be optimized 
as a group of random particles. Afterwards, according to the corresponding formula the current 
position and speed are updated. In the trational PSO algorithm, the deployment problem of the 
sensors in monitoring areas is simulated as swarm particles, which move at the surrounding 
search space and are improved by both their own and swarm’s best position through constant 
generations to find the optimal solutions that we need[27]. 

We have summarized the steps of the optimization PSO algorithm suitable for the 
deployment optimization problem we proposed in this article. Table 1 shows the node 
deployment strategy steps for the PSO-based algorithm to maximize the coverage accuracy 
and minimize the deployment cost. 

 
 
 
 
 
 
 

Randomly deploy 
sensors in the 

monitoring area

Node deployment 
optimization strategy based 

on the PSO  algorithm

Adjust the position of the 
nodes according to the 

obstacles or the probability of 
fire areas

Optimal node 
deployment strategy
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Table 2. The Pseudocode of optimized PSO algorithm 
Node deployment strategy in high space based on PSO algorithm 

1 Input: the number of nodes 𝑛𝑛 , deployment space 𝐿𝐿 × 𝑊𝑊  and maximum 
iteration 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

2 Initializes each particle with a swarm of 𝑛𝑛 
3 While (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is not reached) 
4     For each swarm do 
5         For each particle in the current swarm do 
6             Update the context vector 
7             Calculate the fitness values and put in in 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 
8             If  𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 > 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 then 
9                   Set the current values as the new 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for this particle 
10     End if 
11         End for 
12 End for 

13 Choose the particles with the best fitness values among all the particles as 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 so 
that they can satisfy the requiring conditions of the deployment problem our proposed 

14 Fill the context vector with 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
15 For each particle do 
16 Update speed and location of particle 
17 End for 
18 End while 
19 Output: Global optimal 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  

5. Simulation Experiments and Analysis 
In the previous section, the developed problem is described as MOPs with two objectives 
including the coverage accuracy and the deployment cost that may conflict with each other[30]. 
Then, we design a deployment strategy on the basis of the PSO algorithm to solve this problem 
and compare with the uniform deployment strategy. Therefore, in this part, we introduce our 
detail experimental parameters and analyze the performance of the different deployment 
strategies of smart smoke sensors. We use MATLAB R2020a for simulation experiments, 
randomly distribute sensor nodes in the monitoring area and randomly set up a certain number 
of fire areas with different fire probabilities and rectangular obstacles in the monitoring area. 

To verify the superiority of our proposed optimized deployment strategy of smart smoke 
sensors in dealing with the deployment problem in a large space, we will conduct many 
simulation experiments using PSO algorithms to evaluate the perfromance of the expe rimental 
results. First, two types of deployment strategies are compared, including our proposed 
optimized deployment strategy of smart smoke sensors and traditional uniform deployment. 
Second, the size and shape of the monitoring area, the number and fire probability of the fire 
areas, and the number of obstacles is varied; and we conducted a large number of simulation 
experiments to verify the coverage performance of two deployment strategies under the 
conditions of  different parameters. Then, the number of sensors required for different 
deployment strategies to achieve the deployment scheme is compared. Finally, we analyze the 
coverage accuracy of two deployment strategies under different parameter settings. 
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5.1 Deployment Simulation with Different Levels of Fire Probability 

5.1.1 Parameter Setting 
According to the GB50116-98 standard design specification for automatic fire alarm systems, 
we assume that the sensing radius of the smart smoke sensor is approximately 5m. The main 
parameter settings of the simulation experiment are shown in Table 3. The detailed parameter 
settings for different monitoring scenarios are shown in Table 4. And Table 5 shows the 
setting of fire probability parameters in the fire area. 

Table 3. Simulation Parameter 

 

Table 4. Specific parameter values for different deployment scenarios 

 
Table 5. Fire probability parameter 

 

5.1.2 Deployment Simulation under the different square monitoring areas 
To prove the effectiveness of the optimized deployment strategy of smart smoke sensors based 
on the PSO algorithm that we proposed, we conducted a large number of simulation 
experiments under the above parameters. The final deployment position results of our 
proposed optimized deployment strategy and uniform deployment strategy under the different 
parameter settings are shown in Fig. 3 to Fig. 6. Where in the Figures, the blue blocks represent 
obstacles in the monitoring area, the yellow blocks with different colors represent futures areas 
with different fire probabilities, the red asterisks represent deployed sensor nodes, and circles 
represent the coverage of nodes. 

The optimization strategy based on the PSO algorithm that we proposed prioritizes the fire 

Parameter Description Parameter setting 
Node Perceived Radius R 5 

Monitoring Area Type 
Square monitoring area 

Rectangular monitoring area 

Number of smart smoke sensor nodes [2,50] 

The number of obstacles [2,10] 

The number of fire areas [2,20] 

Classification of fire area 

High risk areas 

Medium risk area 

Low risk area 

Monitoring area 
shape 

Monitoring area size Number of 
obstacles 

Number of fire 
areas 

Number of 
deployment nodes 

Square monitoring 
area 

25 × 25 5 10 [2,12] 
32 × 32 5 10 [2,18] 
45 × 45 10 20 [2,25] 
55 × 55 10 20 [2,50] 

Rectangular 
monitoring area 

30 × 40 5 15 [2,20] 
32 × 55 10 20 [2,25] 

Risk Area Level High risk areas Medium risk area Low risk area 

Fire probability range [0.1,0.3] [0.4,0.6] [0.7,0.9] 
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areas and obstacles in the monitoring area in the process of node deployment. The sensor nodes 
will search whether there is a fire area in the surrounding 5 units through the action of the 
intelligent optimization algorithm, and if there is a fire area, a sensor node will be deployed 
around this fire area. While the sensor nodes encounter an obstacle, it will automatically avoid 
the obstacle. Moreover, when the number of sensor nodes is less than the number of fire areas, 
the nodes will preferentially move to the area with higher fire probability. When considering 
square monitoring areas of different sizes, including 25 × 25𝑚𝑚2, 32 × 32𝑚𝑚2, 45 × 45𝑚𝑚2, 
and 55 × 55𝑚𝑚2, the node deployment situations of our proposed strategy and the uniform 
deployment strategy are shown in Fig. 3 to Fig. 6. Among them, Fig. 3 (a) and (b) denotes 
the final deployment location optimized by PSO algorithm when the number of smart smoke 
sensors is 4 or 6, while Fig. 3 (c) and (d) shows the final deployment location under the 
uniform deployment stratergy whem the number of sensors is 4 or 9 under the same parameter 
settings. Then, Change the square monitoring area of size to size 32 × 32𝑚𝑚2 , and other 
parameters remain unchanged, the final deployment location under the deployment strategy 
based on PSO algorithm and the uniform deployment stategy are shown in Fig. 4 (a), (b), (c), 
(d). Moreover, we varied the size of the monitoring area, the number of obstacles and fire 
areas and other parameters, and the final deployment results are shown in Fig. 5 (a), (b), (c), 
(d) and Fig. 6 (a), (b), (c), (d). 

 

 

 

(a) PSO: 4 nodes  (b)PSO: 6 nodes 

 

 

 

(c) Uniform deployment:4 nodes  (d) Uniform deployment:9 nodes 

Fig. 3. The final deployment of the smart smoke sensors with the square monitoring area is 
25 × 25 𝑚𝑚2. (a) Optimizing deployment based on the PSO algorithm: 4 nodes; (b) Optimizing 

deployment based on the PSO algorithm: 6 nodes; (c) Uniform deployment of 4 nodes; (d) Uniform 
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deployment of 9 nodes. 

 

 

 

(a) PSO: 4 nodes  (b) PSO: 6 nodes 

 

 

 

(c) Uniform deployment:9 nodes  (d) Uniform deployment:16 nodes 

Fig. 4. The final deployment of the smart smoke sensors with the square monitoring area is 
32 × 32 𝑚𝑚2. (a) Optimizing deployment based on the PSO algorithm: 4 nodes; (b) Optimizing 

deployment based on the PSO algorithm: 6 nodes; (c) Uniform deployment of 9 nodes; (d) Uniform 
deployment of 16 nodes. 

 

 

 

(a) PSO: 4 nodes  (b) PSO: 12 nodes 
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(c) Uniform deployment:9 nodes  (d) Uniform deployment:16 nodes 

Fig. 5. The final deployment of the smart smoke sensors with the square monitoring area is 
45 × 45 𝑚𝑚2. (a) Optimizing deployment based on the PSO algorithm: 4 nodes; (b) Optimizing 

deployment based on the PSO algorithm: 12 nodes; (c) Uniform deployment of 9 nodes; (d) Uniform 
deployment of 16 nodes. 

Fig. 6. The final deployment of the smart smoke sensors with the square monitoring area is 55 × 55 𝑚𝑚2. 
(a) Optimizing deployment based on the PSO algorithm: 10 nodes; (b) Optimizing deployment based on 
the PSO algorithm: 12 nodes; (c) Uniform deployment of 25 nodes; (d) Uniform deployment of 36 nodes. 

 

 

 

(a) PSO: 10 nodes  (b) PSO: 12 nodes 

 

 

 

(c) Uniform deployment:25 nodes  (d) Uniform deployment:36 nodes 
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5.1.3 Deployment Simulation under the different rectangular monitoring areas 
To further prove the superiority of our proposed strategy, while keeping the other simulation 
parameters unchanged, when considering rectangular monitoring areas of different sizes, 
including 30 × 40𝑚𝑚2  and 32 × 55𝑚𝑚2 , the sensor node distributions of our proposed 
optimized deployment strategy and uniform deployment are shown in Fig. 7 to Fig. 8. Where 
blue blocks represent obstacles in the monitoring area, yellow blocks with different colors 
represent futures areas with different fire probabilities, red asterisks represent deployed sensor 
nodes, and circles represent the coverage of nodes. 

Among them, Fig.7 (a) and (b) denotes the final deployment location optimized by PSO 
algorithm when the number of smart smoke sensors is 4 or 8, while Fig. 7 (c) and (d) shows 
the final deployment location under the uniform deployment stratergy whem the number of 
sensors is 6 or 12 under the same parameter settings. Then, Change the rectangular monitoring 
area of size to size 32 × 55𝑚𝑚2, and other parameters remain unchanged, the final deployment 
location under the deployment strategy based on PSO algorithm and the uniform deployment 
stategy are shown in Fig. 8 (a), (b), (c), (d). 

 

 

 

(a) PSO: 4 nodes  (b) PSO: 8 nodes 

 

 

 

(c) Uniform deployment:6 nodes  (d) Uniform deployment:12 nodes 

Fig. 7. The final deployment of the smart smoke sensors with the rectangular monitoring area is 
30 × 40 𝑚𝑚2. (a) Optimizing deployment based on the PSO algorithm: 4 nodes; (b) Optimizing 

deployment based on the PSO algorithm: 8 nodes; (c) Uniform deployment of 6 nodes; (d) Uniform 
deployment of 12 nodes. 
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(a) PSO: 6 nodes  (b) PSO: 8 nodes 

 

 

 

(c) Uniform deployment:15 nodes  (d) Uniform deployment:28 nodes 

Fig. 8. The final deployment of the smart smoke sensors with the rectangular monitoring area is 
32 × 55 𝑚𝑚2. (a) Optimizing deployment based on the PSO algorithm: 6 nodes; (b) Optimizing 

deployment based on the PSO algorithm: 8 nodes; (c) Uniform deployment of 15 nodes; (d) Uniform 
deployment of 28 nodes. 

5.2 Comparison of the results with different deployment strategies 
Through a lot of simulation experiments, the effectiveness of our proposed optimized 
deployment strategy of smart smoke sensors is fully verified. In this section, we compare the 
coverage accuracy of our proposed deployment strategy with the uniform deployment strategy 
under different numbers of sensors. As we can see from Fig. 9, in general, we can find that 
our proposed optimized deployment strategy requires fewer sensors to be deployed while 
achieving the same coverage accuracy, which not only saves deployment costs, but also 
obtains better coverage accuracy. 

 
 

(a) Monitoring area: 25 × 25 (b) Monitoring area: 32 × 32 
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(c) Monitoring area: 32 × 32 (d) Monitoring area: 55 × 55 

  

(e) Monitoring area: 30 × 40 (f) Monitoring area: 32 × 55 

Fig. 9. Comparison of the coverage accuracy under different deployment strategies. (a) The 
monitoring area is 25 × 25; (b) The monitoring area is 32 × 32; (c) The monitoring area is 
45 × 45; (d) The monitoring area is 55 × 55; (e) The monitoring area is 30 × 40; (f) The 

monitoring area is 32 × 55. 

It can be seen from Fig. 9(a) that compared with the uniform deployment strategy, our 
proposed optimized deployment strategy requires fewer nodes to be deployed while achieving 
the same coverage performance, and uses the coverage capacity of each node to the maximum 
efficiency so that the deployed smart smoke sensing nodes give priority to areas with fire risk. 
While ensuring the coverage effect, the deployment cost is reduced. As shown in Fig. 9(b), (c) 
and (d), we obtain the same simulation results when we increase the size of the square 
monitoring area. To further prove the applicability of our proposed optimized deployment 
strategy in monitoring areas of different shapes and sizes, we conduct the simulation 
experiment again under the condition of changing the size and shape of the monitoring area 
and setting up fire areas with different fire probabilities and a certain number of obstacles. 
Then, we compared the experimental results with the uniform deployment strategy. It can be 
seen from Fig. 9(e) and (f) that after changing the shape and size of the monitoring area, our 
proposed optimized deployment strategy requires fewer nodes to be deployed while achieving 
the same coverage accuracy compared with the uniform deployment strategy, and utilizes the 
coverage capacity of each sensor to the maximum efficiency so that the deployed smart smoke 
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sensor nodes are prioritized considering areas at risk of fire. The above analysis of the results 
fully proved the effectiveness and superiority of our proposed optimized deployment strategy 
in a large space. 

6. Conclusions and Future Research Issues 
To solve the smart smoke sensor deployment optimization problem in a large space, this paper 
develops an optimized deployment strategy based on the PSO algorithm considering different 
fire probabilities of fire areas and obstacles, which effectively improves the coverage accuracy 
of smart smoke sensors and dramatically reduces the deployment cost. First of all, a 
deployment model of smart smoke sensor nodes that is more consistent with the actual 
application scenario is constructed considering the characteristics of smart smoke sensor and 
large spaces. The model takes into account the influence of obstacles and fire areas in the 
monitoring area, divides the monitoring area into fire risk areas while sets different levels of 
fire probability. Secondly, we established a coverage model and a mathematical model 
containing two optimization objectives, namely minimizing the cost of node deployment and 
maximizing coverage accuracy, and certain constraints are set. Then, a deployment strategy 
based on PSO algorithm is designed on the basis of the established related model. Finally, the 
performance of our proposed deployemnt strategy is verified with the method of simulation 
experiments through comparison with the uniform deployment. Experimental results show that 
our proposed deployment strategy based on the PSO algorithm is better than uniform 
deployment in terms of the coverage accuracy and deployment cost, and has been improved 
to a certain extent. The deployment strategy we put forward is more focused on the probability 
of fire in areas prone to fire, and the maximum effect of the deployed nodes is played. When 
there are obstacles in the monitoring area, our developed strategy can avoid obstacles for 
deployment and better improve the coverage accuracy and reduce coverage holes, since it 
increases the utilization of smart smoke sensor nodes. However, in practical applications, the 
situation of the fire areas and obstacles in the monitoring area may be more complicated. 
Therefore, we will consider the situation of more complex constraints in the next steps of this 
study. 
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