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Abstract – Generation capacities and transmission line constraints in a competitive electricity market 

make it troublesome to compute Nash Equilibrium (NE) for analyzing participants’ strategic 

generation quantities. The NE can cause a mixed strategy NE rather than a pure strategy NE resulting 

in a more complicated computation of NE, especially in a multiplayer game. A two-level hierarchical 

optimization problem is used to model competition among multiple participants. There are difficulties 

in using a mathematical programming approach to solve a mixed strategy NE. This paper presents 

heuristics applied to the mathematical programming method for dealing with the constraints on 

generation capacities and transmission line flows. A new formulation based on the heuristics is 

provided with a set of linear and nonlinear equations, and an algorithm is suggested for using the 

heuristics and the newly-formulated equations. 
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1. Introduction 
 

In order for an economically proficient electricity market 

to take root, it is paramount that prices in a spot market are 

settled competitively among market participants. Competitive 

prices implement appropriate incentives for designing and 

operating electricity markets. Notwithstanding, the demand 

side of limited price responsiveness and the strategic 

behaviors of the generation companies, have deviated the 

prices somewhat from competitive levels.  

Using game theory to model firm’s strategic production 

quantity in order to analyze the phenomenon of the price 

deviation within such a setting has been attempted copiously. 

The most extensively used among oligopoly market models 

has been the Cournot model in Nash Equilibrium (NE) 

analysis of generation wholesale markets [1-4]. In this 

context generation firms determine a strategic quantity 

based on the rivals’ expected productions. Albeit the 

Cournot model does not absolutely conform to the typical 

market rules for electricity markets, it accommodates an 

upper bound on end results in markets where offers can be 

altered from interval to interval. In conjunction, the 

Cournot model capably explains capacity withholding from 

the market and it is also argued in [5] that generation 

capacity withholding, in order to manipulate prices, was a 

strategy extensively employed in the electricity market of 

England and Wales in the 1990s. 

Numerous efforts to develop a solution method for 

determining the NE of generation quantity games in 

electricity markets have led to some obstacles remaining 

unsolved even today. One such demanding problem is 

regarding the transmission line limits, since the market 

clearing mechanism becomes complicated by the transmission 

congestion [6-8]. Another is in relation to a multiplayer 

game where more than three players participate [7, 8]. In 

considering realistic electricity market, it is pertinent to 

keep in mind that there are somewhat more than two but 

less than ten major firms.  

The transmission line congestion status is determined by 

the distribution of generation quantities. Accordingly, the 

decision space can be divided into subsets depending on 

whether the transmission lines are congested or uncongested 

[6]. This leads to discontinuities in the reaction curves [9] 

and precipitates the profit functions to be non-differentiable 

and non-concave. In this instance, there may not abide a 

pure strategy NE. Rather there is a mixed strategy 

equilibrium where players find it optimal to randomly 

choose between strategies [10]. 

The mathematical programming approach [11-13] can 

decipher for the NE of a multiplayer game with differentiable 

and concave profit functions. Nonetheless when a 

transmission line is congested, this process has adversities 

in concluding equilibria due to the profit function being 

non-differentiable and non-concave. Though an artificial 

intelligence based approach [14, 15] addresses to find a 

global optimum using this method, the mixed strategy NE 

and its probability are arduous to compute. Conversely, the 
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payoff matrix approach [7, 8, 16, 17] for two or three 

players can acquire mixed strategy NEs by discretization of 

the decision space. Notwithstanding, it is troublesome to 

utilize this approach to finding mixed strategies in a 

multiplayer game because of the dimensional limit to three 

players and the computational burden. 

The Nikaido-Isoda function and a relaxation algorithm 

(NIRA) are combined in [18-20] to calculate the NE for a 

multiplayer game. The NIRA method is attractive in that 

the most advanced computational routine required is 

minimization of a multivariate function (Nikaido-Isoda 

function). It is also its merit that the method can be applied 

to a wide class of problems, including non-differential 

payoffs and coupled constraints games [18]. However, in 

case that the best response functions of the players do not 

intersect, the method might have difficulty in calculating 

the mixed strategy NE. 

In this study, a new algorithm based on heuristics is 

identified for finding a mixed strategy NE in a multiplayer 

game based on the network configuration. Two intriguing 

phenomena are found and proposed here to characterize the 

equilibrium as a result of investigating manifold cases of 

mixed strategy NEs in all manners of networks and 

markets. The first phenomenon is the existence of a “key 

player” in a mixed NE who controls the transmission 

congestion status (congested or uncongested). The second 

is that the player whose generator is in the specific bus as 

determined by the power transfer distribution factor 

(PTDF) can be the key player. When the mixed strategy 

solution by the heuristics is bigger than the generation 

capacity, it does not meet the generation capacity constraint. 

Therefore two more heuristics are proposed for the NE 

within the generation capacity.  

Numerical examples applied to IEEE 30-bus 6-player 

systems furnished to illustrate the validity of the heuristics 

and the algorithm. These are based on the two-level 

hierarchical optimization converted into a new framework 

with a set of linear equations and a single nonlinear 

equation. An algorithm is also presented for discerning a 

mixed NE by applying a solution of the linear and 

nonlinear equations. 

 

 

2. Nash Equilibrium Of Cournot Model 

 

A. Market and cournot model 
 
Cournot equilibria have been utilized widely to study the 

electricity market. The supplier adopts its profit-

maximizing quantity of generation in the belief that the 

quantities supplied by other producers are fixed and do not 

react to the firm’s quantity changes within Cournot 

competition. 

Assume there are N strategic firms having N generating 

units each. Firm i ∈ {1, …, Ng} has a unit i with a 

generating cost function 
2( ) 0.5i i i i i iC q b q m q= +  and a 

marginal cost ( )i i i i ic q b m q= + , where iq  represents the 

unit i’s generation power quantity, ib  and im  are cost 

coefficients. The inverse demand function at bus j∈{1,…, 

Nd } is j j j jp a r d= − , where jd  is the power demand, 

ja  and jr  are the coefficients. 

 

B. Two-Level optimization 
 
The objective of the market operator (MO) is quite 

dissimilar from the other participants. It attempts to 

maximize the demand side benefit as defined by 

consumer’s surplus and payment, instead of maximizing 

profits. Formulating the MO’s objective into a quadratic 

program, we have 
 

 
2( ) ( 0.5 )

j

j j j j
j Dd

Max B d a d r d
∈

= Σ −   (1) 

 

s.t.  0
i j

i G j D

q d
∈ ∈

− =∑ ∑  (2) 

 ,max0 l lT T l L≤ ≤ ∀ ∈  (3) 

 
where D and G are the sets of all demand buses and 

generating units respectively, L is the set of all transmission 

lines, and Tl acts as the power flow on the transmission line 

l. The constraints consists of a power balance equality (2), 

and transmission power inequalities (3).  

Each rational strategic generation firm maximizes its 

profits (revenue minus generating costs) by selecting its 

own generation parameter accepting as given the strategic 

parameters of other firms [3]. Formulating the firm i’s 

objective into a quadratic program with generation capacity 

limits, we have 
 

 
2( 0.5 )

i

i i i i i i i
q

Max p q b q m qπ = − +  (4) 

 

s.t. i i i ip a r d= −  (5) 

 i Miq q≤  (6) 

 
where iπ  is the profit from unit i, and ip  is a nodal price 

determined by the local demand, id  at the bus unit i, and 

Miq is the capacity limit of iq .  

In this paper, locational marginal pricing is adopted as a 

pricing method of the MO in the electricity market. As 

generating firms’ optimization needs to be solved with the 

MO’s problem simultaneously, these optimizations of 

decentralized decision makers require hierarchical coordi-

nation. At the upper level in (4)~(5), producers initiate a 

decision of selling energy, while, at the lower level in 

(1)~(3), the MO endeavors to maximize the demand side 

benefit based upon the suppliers’ quantities.  

 

C. Congestion and Mixed Strategies 
 
The two-level hierarchical optimization can be solved 

easily by the mathematical programming method, once no 
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inequality binds underlying decision space with the 

Cournot model. Let the solved quantity parameters be 
*q . 

At a pure strategy NE, the strategies of all participants 

satisfy  

 

 
* * *( , ) ( , )i i i i i iq q q q i Gπ π− −≥ ∀ ∈  (7) 

 

where 
*

iq  is the solved quantity parameter of firm i, iq  is 

the possible quantity parameter firm i can choose, and 
*

iq−  

is the solved quantity parameter set of all participants 

excluding firm i. By unilaterally altering their choices, 

none of the generating firms can improve their profits.  

Discouragingly, the transmission limit constraints lead to 

problem complexity depending on whether the transmission 

constraint is binding or not. In case of congestion occurring 

on a transmission line, the decision space becomes divided 

into sub-regions according to whether the line is congested 

or uncongested. This gives rise to discontinuities in the 

reaction curves and causes the profit functions to be non-

differentiable and non-concave [21]. In this way, ultimately, 

the analytic method becomes ineffective. It may be that no 

such pure strategies satisfy the definition of Nash 

equilibrium (7). Instead, the firms may discover that they 

must play a combination of pure strategies, choosing 

amongst them randomly. This is a “mixed strategy,” which 

is specified by the probability distribution of the choice of 

pure strategies [7, 10]. 

 

 

3. Heuristics for mixed strategy NE 

 

A. Example of a mixed strategy NE 

 

For understanding of mixed strategy NE, an electricity 

power market is given with a simple network as shown in 

Fig. 1. The system consists of 3 generating firms, and 3 

buses with a local market at each bus.  

The marginal cost functions of firm F1, F2, F3, and the 

inverse demand functions are respectively, 1MC =  
110 0.3q+ , 2 220 0.4MC q= + , 3MC =

315 0.45q+ , 1p =  
170 0.7d− , 2 280 0.5p d= − , 3 90p = −

30.4d . The 

transmission lines are assumed to be lossless and have the 

reactance satisfying 12x = 13x =2 23x . 

Initially assume that there are no limits of transmission 

flow and generation capacity. On the basis of the Cournot 

model, the clearing prices are determined by the benefit 

maximization of demands located at each bus. Solving the 

two-level optimization yields a pure strategy NE; 

1 84.21q = , 2 51.82q = , 3 55.71q = . Such choices lead to 

the clearing prices of 1 2 3 49.47p p p= = = , and the power 

flow of 12 23.8T = .  

Now assume the flow limit on the line joining bus 1 to 

bus 2 is maxT =15. Taking the inequality into consideration 

gives a mixed strategy NE; 1 60.23q = , 2 [56.1, 46.3]q = , 

3 60.95q =  with probability [0.49, 0.51]. At the NE, player 

2 chooses a mixed strategy consisting of two pure 

strategies, while player 1 and 3 choose pure strategies. In 

this paper, a player choosing a mixed strategy is defined as 

a “key player,” while other player choosing a pure strategy 

is called as a normal player.  

The expected profit of each firm is shown in Fig. 2. The 

expected profit with respect to its generation quantity is 

computed with the other players’ quantities fixed. The 

highest point in the curve corresponds to equilibrium 

strategy. In the case of 2π , there are two peak points 

having equivalent values, since F2 chooses a mixed strategy. 

This means that each player has no incentive to deviate 

from its choice, given the choices of the other players. 

 

B. Distribution factors 
 
The dc power flow is widely used to approximate the 

power system. The dc power flow equations, including all 

buses except the slack bus, are ([22, 23]): 

 

 θ =Β P  (8) 

 

where B is bus susceptance matrix, θ  is the vector of bus 

voltage angles, and P is the vector of bus real power 

injections. The nodal power balance equations are implied 

in (7). The real power flow on the branch between bus i 

and j is  
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Fig. 2. Expected profit of each firm at NE with transmission capacity 

 

Fig. 1. Diagram of 3-bus system with a congested line 
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 ( )ij ij i jT b θ θ= −  (9) 

 

where ijb  is branch susceptance between bus i and j. The 

vector of power flows on all branches is  

 

 θ=T H  (10) 

 

where H is the product of the branch susceptance diagonal 

matrix and an appropriate incidence matrix of branches 

with buses [2]. If the kth transmission line connects bus i 

and bus j, then 

 

 , , 0, ,ki ij kj ij klh b h b h l i l j= = − = ∀ ≠ ≠ .  (11) 

 

Substituting (8) into (10), we have  

 

 1−= ⋅T H B P  (12) 

 

Define 
1−= ⋅fD H B , whose elements indicate the 

sensitivity of branch flows to nodal net injection and 

withdrawal at the reference bus.  

 

C. Heuristics about “Key Player” 

 

A new algorithm for finding mixed strategies results 

from investigating numerous cases of mixed NEs in a 

congested multiplayer power market. Some patterns were 

extracted from relations among the mixed strategies, key 

player, and the bus of key player. These patterns are 

organized into two heuristics.  

Certain conditions are needed to validate the heuristics: 

1) the market analysis model is the Cournot model or the 

supply function equilibrium model; 2) the demand is not 

strategic; and 3) congestion occurs on one transmission 

line. If a different model like Bertrand model is used 

instead of Cournot, the heuristics may not be valid any 

longer. However, condition 3) is just for simplicity of 

understanding, and the algorithm can be used in multi-

congested line cases as shown in numerical results.  

Heuristic I: There exists one key player, and the others 

are normal players at the NE. 

In other words, only one player chooses randomly 

amongst two pure strategies with probabilities α and β 
(α+β=1); that is, the player chooses a mixed strategy, and 

the others choose pure strategies. The key player chooses 

amongst the two choices with the probabilities, while the 

normal players choose their pure strategies. One of the two 

choices gives rise to congestion on a line. It is called a 

congestion strategy. The other, on the contrary, makes no 

congestion. It is called an uncongestion strategy. The α and 
β show the probabilities of an uncongestion and a 

congestion strategy, respectively. In the 3-bus case, among 

the key player’s choice, 2 46.3q =  is a congestion strategy, 

while 2 56.1q =  is an uncongestion strategy. 

Heuristic II: Location of the key player is the bus that 

has the most negative value of PTDF on the congested line. 

The PTDF indicates the sensitivity of line flows to nodal 

power injection. Therefore the bus having the most 

negative value on the congested line can be interpreted as 

the most effective location to control the congestion by 

withholding supply. Also, it seems to be the best location to 

exercise market power by using the congestion. In the 3-

bus case, the PTDF values of all buses on the line from bus 

1 to bus 2 with a reference of bus 3 are 0, -0.6, and -0.4, 

respectively. Firm 2 at bus 2 has the most negative among 

the strategic participants, thus it plays a key player role in 

the NE. 

 

D. Heuristics about generation capacity limits 

 

A key player locates in receiving area over a congested 

line. If a key player lowers its generation quantity, then the 

players locating in the sending area hope to increase their 

generation for supplying the demand in receiving area over 

the congested line. Thus the less quantity a key player 

chooses, the more the line is congested. So among the 

mixed strategies of a key player, a congestion strategy is 

smaller than uncongestion strategy.  

The generation capacity limits can affect NE of all the 

players. When uncongestion strategy of a key player is 

bigger than its generation capacity limit, the strategy is 

impractical and useless.  

Heuristic III: When a key player has a mixed strategy 

NE, congestion strategy is smaller than uncongestion strategy, 

and uncongestion strategy is equal or less than its generation 

capacity limit. 

In a solution algorithm, we proposed two steps; 

considering transmission limit only, and considering both 

of transmission and generation capacity limits. The solution 

after the first step may not satisfy the generation capacity 

constraints. If unncongestion strategy solved in the first 

step is bigger than the generation capacity limit of a key 

player, then uncongestion strategy is set to the generation 

capacity in the second step.  

Heuristic IV: If a generation capacity limit of a key 

player is quite less than uncongestion strategy from the 

first step, then the role of key player may be transferred to 

other player in the NE.  

A key player with a mixed strategy NE uses two 

conflicting cards (uncongestion strategy, congestion strategy). 

But when uncongestion strategy is strongly restricted by 

the generation capacity, the controlling power of a key 

player using the two cards is weaken. If the generation 

capacity limit becomes less than a certain point, a next 

candidate for a key player takes the role of key player. The 

next candidate means a player at the bus that has the 

secondly negative value of PTDF on the congested line. As 

for the certain point, it is named in this paper as the 

“critical” generation capacity of a key player. It means the 

lowest limit of generation quantity for a key player to 

wield its mixed strategies. The critical generation capacity 
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is a little less than the congestion strategy solved in the first 

step. Those are shown in a numerical simulation, but it is 

not verified or derived mathematically.  

Generation capacity limits are imposed on the former 

example of 3 bus system. Table 1 shows the solutions of 

generation quantity, and the probabilities at NE corres-

ponding to generation capacity limits of 2Mq =50 and 40. 

When the limit is 50 which is smaller than the 

uncongestion strategy in Fig. 2, the player F2 still has the 

role of key player. The expected profits are shown in Fig. 

3(a). Although the dotted line for 2π  has higher profits 

than profit at NE, it is not allowed due to the generation 

capacity limit 50. When the limit is 40, however, F2’s 

strategy becomes restricted more, and F3 who has the next 

PTDF value takes the role of key player. Fig. 3(b) shows 

the expected profits and verifies the NE condition. F3’s 

profits increases due to the key player role, but the others’ 

decreases than (a). The critical generation capacity is 

computed as 45.697 in this example. This is a little less 

than 46.30 which is the congestion strategy of F2 under a 

generation capacity limit free. 

 

 

4. Solution Method 

 

A. Expected profit balance of key player 
 
An insight to a mixed strategy NE is the following: All 

pure strategies that are played as part of the mixed strategy 

NE have the same expected profit [24]. If one strategy 

yields lower profit than another, then we should play only 

the strategy that profits more to the exclusion of the 

strategy that profits less. This is just domination of one 

strategy by another, when probability is involved. 

The key player has two choices in a mixed strategy: an 

uncongestion strategy and a congestion strategy. Therefore, 

the expected profit from an uncongestion strategy should 

be equal to that from a congestion strategy. So the key 

player’s profits satisfy 

 

 
* *( , , ) ( , , )u u i c c iq q q qπ α π β− −=  (13) 

 
where uq  and cq  are an uncongestion strategy and a 

congestion strategy of the key player, respectively, while 
*

iq−  is the pure strategies of normal players. The coefficients 

α and β (=1-α) are the probabilities of choosing uq  and 

cq , respectively. The uπ  and cπ  are the profits of the 

key player corresponding to the uq  and cq , respectively. 

This condition of expected profit balance of the key player 

is the nonlinear equation with a variable α. 
 

B. Modified optimization formulation 
 
The expected profit of the key player depends on the 

probabilities of the two different states: uncongestion and 

congestion. The normal players’ expected profits also 

depend on the key player’s choice. Therefore, the 

optimization of (4) at the upper level needs to be changed 

into the forms with expected values.  

The optimality conditions for the upper level problem of 

maximizing the expected profits of the key players are: 

 

 / ( ) 0u u u u u

x x x x x x x x x xq m r s q r d b aπ∂ ∂ = + + + − =  (14) 

 / ( ) 0c c c c c

x x x x x x x x x xq m r s q r d b aπ∂ ∂ = + + + − =  (15) 

 

where the subscript ‘x’ denotes the key player, 
u

xd  and 
c

xd  

are the demand powers at bus x, dispatched by the MO 
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Fig. 3. Expected profits at NE with generation capacities, 2Mq =50(a), 40(b) 

Table 1. NE at Different Generation Capacity Limits in 3 

bus system 

qM2=50 qM2=40 
 

( qu,     qc ) ( α,  β ) ( qu,     qc ) ( α,  β ) 

F1 59.25,     0 1,   0 53.9,     0 1,   0 

F2 50,     46.0 0.44, 0.56 40,     0 1,   0 

F3 61.85,     0 1,   0 64.7,   64.5 0.19, 0.81 
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corresponding to 
u

xq  and 
c

xq , respectively. The sensitivities 

of demand quantity are included which are defined as 

/u u

i i is d q= ∂ ∂ , /c c

i i is d q= ∂ ∂ . These are shown in Appendix 

A with the optimal conditions of the MO. 

The optimal condition to the expected profits of the 

normal players i is  
 

 
/ { }/

{( ) ( )}/

u c

i i i i i
u c

i i i i i i

q q

p p q C q q

π α π β π
α β

∂ ∂ = ∂ ⋅ + ⋅ ∂
= ∂ ⋅ + ⋅ − ∂

( )u c

i i i im s s qα β= − + ⋅ + ⋅  (16) 

  ( ) 0u c

i i i i i xr d d b a i Gα β −− ⋅ + ⋅ − + = ∀ ∈  

 
where the xG−  is the sets of all generation firms of normal 

players. The 
u

ip  and 
c

ip  are the market prices at bus i 

when the network conditions are in an uncongestion and 

congestion, respectively. 

 

C. Conversion to single variable problem 
 
Rewriting the optimal conditions of generation firms in 

(14)~(16) as a matrix form, we have 

 

 Tu · d
u + Tc ·d

c  + Ts · qa
 = bs (17) 

 
where qa is the generation variables as specified in (A.1) in 

the Appendix, du and dc are the demand powers at all the 

buses in an uncongestion and a congestion situations, 

respectively. The coefficient matrices, Tu, Tc, and Ts contain 

the variable α (or β) as defined in Appendix A, and bs is 

described in (A.11). 

We consider the number of equations. There is one 

nonlinear equation from (13) corresponding to the upper 

level optimization, Nd +1 linear equations for uncongestion 

situation from (A.6) from the lower level optimization, Nd 

+2 linear equations for congestion situation from (A.7) 

from the lower level optimization, and Ng +1 linear 

equations for generation firms from (17) corresponding the 

upper level optimization. Therefore, there are one 

nonlinear and Ng+2Nd +4 linear equations.  

Rearranging the linear equations, we have 

 

 

max

0

0

0 0 0

u

tu u
u

c

t
c

c c
t

lg

sau c s

T

λ

λ
µ

     
   −  
     

⋅ =     −     
           

0 d aM 0
e
0 ad

0 M e

h
bqT T T

 (18) 

 

where Mu, a, eu, ec, λ  and µ  are described in (A.6) and 

(A.7), and Mc is the square matrix in (A.7). 

Therefore, with a congestion line and with its key player 

guessed, the equilibrium of the problem is obtained by 

solving the following simplified set of equations; 

 

 Nonlinear: ( , ) 0f α =x  (19) 

 Linear: ( )o oα ⋅ =M x b  (20) 

 
where f re-expresses (13), oM , x , and ob  are the 

coefficient matrix, the variable vector, and the right-hand-

side constant vector in (18) respectively. Therefore, it can 

be written as only one nonlinear equation with single 

variable as  

 

 
1( , ) 0o of α − ⋅ =M b . (21) 

 
This equation can be solved easily by a line search 

method such as a bisection algorithm, since the function 

value is monotonic in the variable α . This solution 

process considers only transmission line constraints but 

generation capacity, because the solution of (21) does not 

guarantee to satisfy the generation capacity constraints.  

 

D. Two steps for considering generation capacity limits 
 
The mixed strategy NE and its probability are hard to 

compute using conventional mathematical method. In this 

paper, two steps are proposed, the first is the solution 

process of (21) based on the heuristics I and II.  

The second step is to check the solution of (21) for 

meeting the generation capacity constraints and to modify 

(21) and to solve it based on the heuristics III and IV. If the 

generation capacity constraints are satisfied after the first 

step, the solution is the NE and the second step is not 

required. If a generation capacity limit of a player is 

smaller than its strategy in the solution of (21), then its 

strategy in NE is the capacity limit and the others in NE are 

obtained by solving the modified (21). If the modified (21) 

does not have any solution, it is required to change the role 

of key player to the next player.  

 

 

5. Numerical Results 

 

A. Sample system 
 
The test system used in this paper is a modified IEEE 

30-bus system [16] as shown in Fig. 4. Six firms are 

assumed to participate in the electricity market and own the 

six generators, with each player having ownership of one 

generator. Generation marginal cost data are shown in 

Table 2. At the buses, 1, 13, 22, and 27 where the 

generation firms are connected, we add the demands. The 

inverse demand function for all demands are assumed to be 

identical for simplicity as 6.0 0.2j jp d j D= − ∀ ∈ . 

First, the line limits are assumed to be big enough to 

cause no congestion in the equilibrium. The results is the 

pure strategy NE as follows: q=[47.35, 58.66, 21.94, 24.61, 

21.94, 41.43]. The price is 4.27 and identical at all buses, 

which is higher than the perfect competition price of 4.09. 

The demand power is 8.637 at each bus, and the total 

power is 215.93 MW, less than 238.33 at perfect 
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competition. The power flows on line lA between bus 2 and 

bus 6, and line lB between bus12 and bus 15 are 24.94 MW, 

and 10.6 MW respectively. 

 

B. Mixed strategy equilibria 

 

To consider congestion, let the limit of line lA be 20 MW 

while keeping other limits unchanged. Then, there is no 

pure strategy satisfying the NE condition.  

By looking at the topology of the network, it is hard to 

guess the key player who is using a mixed strategy with 

respect to the line lA dotted in Fig. 4. But the PTDF gives 

information about this. The PTDFs corresponding to the 

line lA are [0.0, 0.057, -0.261, -0.294, -0.279, -0.307]. 

Because the 6th value is the most negative, the firm F6 

located at bus 27 is guessed as the key player.  

By setting up a single variable Eq. (21) of a probability 

α that F6 chooses as an uncongestion strategy, and solving 

the equation, the mixed strategy NE is obtained as follows; 

[ 1 5~q q ]=[42.03, 47.25, 23.39, 25.19, 23.36], and F6’s 

choice, [ 6 6,u cq q ]=[44.68, 40.60] with probabilities [ ,α β ]= 

[0.864, 0.136]. In the uncongestion situation, the price is 

4.35 with demand power 8.236 at each bus, and the power 

flow on the line lA is 19.8 MW. In the congestion situation, 

the prices at the buses are shown in Fig. 5. All the nodal 

prices are a little higher than those of the uncongestion 

case. The price of the bus 2, sending end of the line lA, is 

the lowest, and that of the bus 8, next to the receiving end 

of the line lA, is the highest. 

To verify the solution is a NE, the expected profit of 

each firm is illustrated as shown in Appendix B. The 

expected profit corresponding to the NE displays the 

highest profit for all the expected profit functions. This 

meets the definition of NE. Hence, the NE is verified to 

correspond to the heuristic that only one player chooses a 

mixed strategy consisting of two pure strategies, and the 

other players choose pure strategies. 

 

C. Solutions as line limit changes 
 
In a solution process of the first step, if the obtained 

value α  is bigger than 1.0, it means the solution is a pure 

strategy NE with all the lines uncongested. Conversely, if 
α  is less than 0, it corresponds to a pure strategy NE with 

a line congested, instead of a mixed strategy. If α has a 
value between 0 and 1, then the solution is a mixed 

strategy NE with a line congested. The changes of α and 
the changes of the key player’s mixed strategy are 

investigated as the power flow limit of the line lA changes, 

and are shown in Figs. 6 and 7. 

The range of the line limit Tmax is divided as I, II, and III 

in Figs. 6 and 7. In the range II (Tmax = 7.0 ~ 24.9), the 

probability α of F6 to choose 6

uq  in a mixed strategy 

 

Fig. 4. Diagram of IEEE 30-bus system 

 

Table 2. Generator Marginal Cost Functions 

Firm Bus bi mi qMx 

1 1 2 0.04 80 

2 2 1.75 0.035 80 

3 13 3 0.05 40 

4 22 1 0.125 30 

5 23 3 0.05 50 

6 27 3.25 0.01668 55 

 

 

Fig. 5. Nodal prices in congestion case 
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Fig. 6. Probability changes as line limit changes 
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Fig. 7. Quantity parameter changes limit changes as line 
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varies from 0 to 1. However, a congestion case pure 

strategy is obtained in range I, while an uncongestion case 

pure strategy is obtained in range III as shown in Fig. 7. In 

range I, the pure strategy 6

cq  varies, while in range III, the 

pure strategy 6

uq  keeps constant value 41.43 as in the 

previous uncongested situation.  

As another case, let the limit of the line lB between bus 

12 and bus 15 be 8.0 MW neglecting the limit of the line lA. 

The PTDFs to the line lB are [0.0, -0.002, 0.171, -0.128, -

0.363, -0.099]. Hence, due to the 5th value, the firm F5 is 

selected as the key player to the line lB. The computation of 

(21) gives an equilibrium as follows; [ 1 4 6~ ,q q q ]=[45.08, 

55.47, 15.09, 25.34, 45.14], and the F5’s choice [ 5 5,u cq q ]= 

[22.89, 18.12] with < 0α . So, the probability of 

uncongestion is zero, and the F5 chooses a pure strategy of 

5

cq  which causes a congestion on line lB.  

 

D. Multiple congestions 
 
So far, the algorithm has been presented based on the 

condition in Section III.C that a transmission line congestion, 

if any, occurs on just one line. This was needed for 

simplicity to describe the form of the equations such as 

(18). Multiple congestion cases are also solved by the 

proposed algorithm with some modifications on the 

procedure and the equations.  

For example, assume the congestions on lines lA and lB 

with limits 20 MW and 8 MW, respectively. The F5 and the 

F6 are decided as key players by the PTDF values as in the 

former examples. Since there are two key players, there are 

four cases relating to congestion or noncongestion of the 

two, such as UU, UC, CU, CC. As an example, UC means  

that one of two key players chooses the uncongestion 

strategy; the other chooses the congestion strategy. Therefore, 

the generation variable vector q is defined as [ 1 4~q q , 

5 5
,u cq q , 6 6

,u cq q ]. The variables of the power demands d are 

also categorized into four cases as well as λ  and µ, for 

example, duu, duc, dcu, dcc.  

With these categorized variables, the Eq. (18) is extended 

to the four cases. Solving the two nonlinear equations as 

(13) of two variables α5 and α6, with the two-dimensional 

search, the NE is as follows; [ 1 4~q q ]=[41.81, 47.49, 

17.45, 25.63], the F5’s choice [ 5 5
,u cq q ] =[23.75, 18.25] 

with probability of uncongestion α5=0.210, and the F6’s 

choice [ 6 6
,u cq q ]= [46.96, 42.32] with probability of 

uncongestion α6=0.886. Therefore, the probability of the 

UU that line lA is not congested, and line lB is not 

congested at the NE is α5∙α6=0.186. By the same method, 

the probabilities of UC, CU, and UU are α5∙β6=0.024, 
β5∙α6=0.700, and β5∙β6=0.090, respectively. This solution 
was also verified as a NE shown in Fig. 9 in appendix B. 

 

E. Generation capacity constraints 

 

In order to consider the generation capacity constraints, 

we modify gradually F6’s generation capacity limit from 55 

to 38 in Table 2, and go back to the situation of section B 

where the transmission line constraint of only lA but lB is 

considered. The limit of line lA is assumed as 20MW as 

before.  

After the first step in a solution process, the key 

player(F6)’s choice is [ 6 6,u cq q ]=[44.68, 40.60]. Until the 

capacity limit decreases to the uncongestion strategy 44.68, 

the NE in section B does not change. During it decreases 

44.68~ 40.265, F6 keeps the role of key player, but the 

controlling power of key player drops gradually, and its 

profit also drops. The number 40.265 is the critical 

generation limit in this case, and it is very close to the 

congestion strategy 40.60 in section B. When the capacity 

limit of F6 is 38, less than the critical generation limit, the 

role of key player is transferred to F4 whose value of PTDF 

is -0.294 in section B, and the second priority after F6. The 

computation of (21) with an assumption of a key player F4 

gives an NE as follows; [ 1 3~q q , 5 6,q q ]=[41.94, 46.56, 

24.11, 24.06, 38], and F4’s choice [ 4 4,u cq q ]=[25.56, 25.18] 

with probability of uncongestion α4=0.844. To verify the 

solution is a NE, the expected profit of each firm is 

illustrated as shown in Fig. 10 in Appendix B. 

 

 

6. Conclusion 

 

An algorithm for solving a mixed strategy transmission-

and-generation-constrained Nash Equilibrium is presented 

in this paper. The difficulties of finding a mixed strategy in 

a multiplayer game are lessened greatly by introducing 

four heuristics. In case of one transmission line being 

congested, it is proposed that only one player may use a 

mixed strategy, while the others use a pure strategy. The 

key player who uses a mixed strategy is determined by the 

power transfer distribution factors. Under the heuristics, 

the two-level optimization is converted into a new 

framework with a nonlinear and linear equations. When a 

generation capacity limit restricts strongly the strategy of a 

key player, the role of a key player may be transferred to 

the other player. A new key player is determined also by 

the PTDF.  

The algorithm for finding a key player, and using a 

solution of the nonlinear equation is tested on the IEEE 30-

bus system. The equilibrium solved by the method is 

verified to satisfy the NE condition. The proposed algorithm 

is shown to be effective in reducing the search space for 

finding a key player, and efficient in computing a mixed 

strategy in a power market with transmission line 

congestions. The possibility of extension of the proposed 

method to multiple line congestions is shown in the 

numerical results for the two key player case.  
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Appendix A 

 

Sensitivities of generation quantities 
 
We rearrange the generation firms as 1, …, Ng-1 for the 

normal players, and Ng, Ng+1 for the key player’s 

uncongestion variable and congestion variable, respectively. 

The generation variable qa is defined as an augmented 

vector with a dimension ( 1) 1gN + × ;  

 

 [ , , ]t u c t

a x
q q−=q q  (A.1) 

 
where q-x is a column vector of generation variables of the 

normal players.  

The incidence matrices Nu and Nc with a dimension 

(Ng+1)× Nd are defined as, for simple matrix forms of the 

equations, 

 

1 ,
( , )

0,
u i j


= 


N  

 
1 ,

( , )
0,

c i j


= 


N  

 

At the lower level of the hierarchical optimization, the 

Lagrangian of the MO’s objective function is  

 

 max( ) ( ) ( )i i j j l lL B d q d T Tλ µ= + ⋅ Σ −Σ + ⋅ −  (A.2) 

 
where B(d) is the demand side benefit as specified in (1), 

λ  and µ  are the multipliers on equality and inequality 

constraints, respectively, and Tl max is the power flow limit 

on a congested line l. The transmission power on the line is 

expressed as  
 

 Tl = [ , ] [ , ]t t t t t

g d a⋅h h q d  (A.3) 

 
where d is a column vector of the demand power, gh  and 

dh  are the column vectors of the sensitivities of branch 

flows to q and d from (11).  

The optimality conditions of the MO for the uncongested 

case and congested case are, respectively 

 

 / 0,u u u

j j j jL d a r d j Dλ∂ ∂ = − − = ∀ ∈  (A.4) 

 / 0,c c c

j j j jL d a r d j Dλ∂ ∂ = − − = ∀ ∈  (A.5) 

 
Rearranging the linear equations (A.4) corresponding to 

the uncongestion variables with the supply-demand balance 

equation as (2), we have 

 ( )00

u
ar d

tt u
ud λ

Λ     ⋅ + ⋅ =     −    

e 0d a
q

ee
 (A.6) 

 

where 1( , , )r Nddiag r rΛ = ⋯ , ed is a column vector 

consisting of Nd number of 1, du is a column vector 

consisting of power demand in the uncongested case, a is a 

column vector containing the intercepts of the demand 

functions, and eu=Nu∙ ed with a dimension ( 1) 1gN + × . 

Similarly, rearranging the equations (A.5) of congestion 

variables with the balance equation and the congestion 

binding equation, we have 

 

 

max

0 0
0 0

c
d

t au c
c

t t
ld g

T
λ
µ

     
    −  ⋅ + ⋅ =

            

0h adM
e q

h h
 (A.7) 

 

where uM  is the square matrix in (A.6), and ec=Nc· ed with 

a dimension ( 1) 1gN + × . 

The sensitivities of power demands with respect to 

generation quantities, 
u

is  and 
c

is , are obtained from the 

linear equations (A.6) and (A.7), respectively. On the other 

hand, the optimality conditions for generating firms at the 

upper level are expressed as (18). The coefficient matrices 

in (18) are  

 

 ( ),u u i idiag r i Dδ= ⋅ ∀ ∈T N  (A.8) 

 ( ),c c i idiag r i Dε= ⋅ ∀ ∈T N   (A.9) 

 
{ ( ),

, },

u c

s i i i i
u u

x x x x x x x

diag m z s s

m r s m r s i G

α β
−

= + ⋅ + ⋅
+ ⋅ + ⋅ ∀ ∈

T
 (A.10) 

 [ , , ] ,ts i i x x x x xw b a b a b i G−= − − − ∀ ∈b  (A.11) 

 

where iδ =1 and iε =1 when i =x, otherwise, iδ =α  and 

iε = β . The iz , and iw are the ith element of the vectors, 
z = 1[ , , ]tu Ndr r⋅N ⋯ , 1[ , , ]tu Ndw a a= ⋅N ⋯ , respectively. 

 

 

Appendix B 

 

Profit curves for NE verification 
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Fig. 8. Expected profits at NE with line lA congested in 

IEEE 30-bus system 

i<Ng, if the ith normal player is at the jth bus, 

i=Ng+1, if the key player is located at the jth bus. 

Otherwise.  

i<Ng, if the ith normal player is at the jth bus, 

i=Ng, if the key player is located at the jth bus. 

Otherwise. 
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Fig. 9. Expected profits at NE with line lA and line lB 

congested in IEEE 30-bus system 
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