• Title/Summary/Keyword: Statistics method

Search Result 5,802, Processing Time 0.034 seconds

Quasi-Likelihood Approach for Linear Models with Censored Data

  • Ha, Il-Do;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.219-225
    • /
    • 1998
  • The parameters in linear models with censored normal responses are usually estimated by the iterative maximum likelihood and least square methods. However, the iterative least square method is simple but hardly has theoretical justification, and the iterative maximum likelihood estimating equations are complicatedly derived. In this paper, we justify these methods via Wedderburn (1974)'s quasi-likelihood approach. This provides an explicit justification for the iterative least square method and also directly the iterative maximum likelihood method for estimating the regression coefficients.

  • PDF

Statistical Estimation for Generalized Logit Model of Nominal Type with Bootstrap Method

  • Cho, Joong-Jae;Han, Jeong-Hye
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 1995
  • The generalized logit model of nominal type with random regressors is studied for bootstrapping. In particular, asymptotic normality and consistency of bootstrap model estimators are derived. It is shown that the bootstrap approximation to the distribution of the maximum likelihood estimators is valid for alsomt all sample sequences.

  • PDF

A Note on Estimating Parameters in The Two-Parameter Weibull Distribution

  • Rahman, Mezbahur;Pearson, Larry M.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.1091-1102
    • /
    • 2003
  • The Weibull variate is commonly used as a lifetime distribution in reliability applications. Estimation of parameters is revisited in the two-parameter Weibull distribution. The method of product spacings, the method of quantile estimates and the method of least squares are applied to this distribution. A comparative study between a simple minded estimate, the maximum likelihood estimate, the product spacings estimate, the quantile estimate, the least squares estimate, and the adjusted least squares estimate is presented.

  • PDF

Kernel method for autoregressive data

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.949-954
    • /
    • 2009
  • The autoregressive process is applied in this paper to kernel regression in order to infer nonlinear models for predicting responses. We propose a kernel method for the autoregressive data which estimates the mean function by kernel machines. We also present the model selection method which employs the cross validation techniques for choosing the hyper-parameters which affect the performance of kernel regression. Artificial and real examples are provided to indicate the usefulness of the proposed method for the estimation of mean function in the presence of autocorrelation between data.

  • PDF

Estimation of Spatial Dependence with GEE

  • Lee, Yoon-Dong;Choi, Hye-Mi
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.269-273
    • /
    • 2003
  • We consider an efficient parametric estimation method of spatial dependence in weak stationary processes. Spatial dependence is modeled through variogram and correlogram. Most of parametric estimation methods of correlogram use two step method; nonparametric estimation and parametric integration. We bind these two steps into one step by using GEE method instead of least squares type optimization. Our one step method is more efficient statistically and gives a clear interpretation of related concepts used in traditional two step methods.

  • PDF

On the Performance of Iterated Wild Bootstrap Interval Estimation of the Mean Response

  • Kim, Woo-Chul;Ko, Duk-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.551-562
    • /
    • 1995
  • We consider the iterated bootstrap method in regression model with heterogeneous error variances. The iterated wild bootstrap confidence intervla of the mean response is considered. It is shown that the iterated wild bootstrap confidence interval has coverage error of order $n^{-1}$ wheresa percentile method interval has an error of order $n^{-1/2}$. The simulation results reveal that the iterated bootstrap method calibrates the coverage error of percentile method interval successfully even for the small sample size.

  • PDF

A Note on the Characteristic Function of Multivariate t Distribution

  • Song, Dae-Kun;Park, Hyoung-Jin;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.81-91
    • /
    • 2014
  • This study derives the characteristic functions of (multivariate/generalized) t distributions without contour integration. We extended Hursts method (1995) to (multivariate/generalized) t distributions based on the principle of randomization and mixtures. The derivation methods are relatively straightforward and are appropriate for graduate level statistics theory courses.

Small Area Estimation via Nonparametric Mixed Effects Model

  • Jeong, Seok-Oh;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.457-464
    • /
    • 2012
  • Small area estimation is a statistical inference method to overcome the large variance due to the small sample size allocated in a small area. Recently some nonparametric estimators have been applied to small area estimation. In this study, we suggest a nonparametric mixed effect small area estimator using kernel smoothing and compare the small area estimators using labor statistics.

A Test for Independence between Two Infinite Order Autoregressive Processes

  • Kim, Eun-Hee;Lee, Sang-Yeol
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.191-197
    • /
    • 2003
  • This paper considers the independence test for two stationary infinite order autoregressive processes. For a test, we follow the empirical process method devised by Hoeffding (1948) and Blum, Kiefer and Rosenblatt (1961), and construct the Cram${\acute{e}}$r-von Mises type test statistics based on the least squares residuals. It is shown that the proposed test statistics behave asymptotically the same as those based on true errors.

  • PDF

Shapriro-Francia W' Statistic Using Exclusive Monte Carlo Simulation

  • Rahman, Mezbahur;Pearson, Larry M.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.139-155
    • /
    • 2000
  • An exclusive simulation study is conducted in computing means for order statistics in standard normal variate. Monte Carlo moments are used in Shapiro-Francia W' statistic computation. Finally, quantiles for Shapiro-Francia W' are generated. The study shows that in computing means for order statistics in standard normal variate, complicated distributions and intensive numerical integrations can be avoided by using Monte Carlo simulation. Lack of accuracy is minimal and computation simplicity is noteworthy.

  • PDF