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ABSTRACT

The generalized logit model of nominal type with random regres-
sors is studied for bootstrapping. In particular, asymptotic normality
and consistency of bootstrap model estimators are derived. It is shown
that the bootstrap approximation to the distribution of the maximum
likelihood estimators is valid for almost all sample sequences.
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1. INTRODUCTION

Some asymptotic theory for applications of Efron’s(1979) bootstrap to the
generalized logit model of nominal type with random regressors case, which
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is frequently used in modelling the polytomous response relationship, will be
developed. McCullagh and Nelder(1989) gives a good overview of the context.
See also Fahrmeir and Kaufmann(1985) for consistency and asymptotic nor-
mality of the maximum likelihood estimator in generalized linear models. The
bootstrap approximation to the distribution of the least squares estimators in
linear models context is studied by Freedman(1981), and the less metrical ver-
sion of the same results can be found in Beran(1984) with more examples. A
nice review of bootstrap methods developed so far is given by Hinkley(1988),
where numerous references are cited. Hosmer and Lemeshow(1989) considered
the generalized logit model with some applications. The bootstrap results for
some generalized linear models have been studied by Lee(1990), and Lee, Kim,
Sohn and Jeong(1992).

In section 2 we introduce the generalized logit model with some asymptotic
properties of the maximum likelihood estimators. In particular, asymptotic
normality and strong consistency of model estimators are studied. Section
3 gives bootstrapping generalized logit model of nominal type with random
regressors. That is, we present the ways of bootstrapping and its validity for
almost all sample sequences.

2. MODEL AND STATISTICAL ESTIMATION
2.1. Model and the Method of Estimation

Logistic regression is most frequently employed to model the relationship
between a dichotomous (or binary) outcome variable and a set of covariates,
but with a few modifications it may also be used when the outcome variable
is polytomous. The extension of the model and methods for a binary outcome
variable to a polytomous outcome variable is easily illustrated when the out-
come variable has (m + 1) categories. In developing models for a polytomous
outcome variable we need to be aware of its measurement scale. Most appli-
cations, and hence the focus of the material in this paper involve a nominal
scaled outcome variable. Methods are available for modeling an ordinal scale
outcome variable but we will not present them. Assume that the categories
of the outcome variable, Y, are coded 0,1,2,---,m and that a set of covari-
ates Xo, X1, X2, -+, X, are continuous (interval scale) random variables. The
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generalized logit model of nominal type specifies the relationship between the
response variable Y and covariates X;’s as follows (X, = 1) :

P(}/z =] Ixilami27""$ip)

lo = ] y 3 : i3 “ e . i

; P(Y;=0]zy,25, -, ) Bjo + Binzia + Biaiz + -+ - + BjpTip
= xBs, (2.1)
where x}! = (1,z;1, 23, -+, 2;p) is the i-th vector of explanatory variables and
B; = (Bjo, Bj1, -+ ,ﬂjp)‘ is a vector of parameters of interest (t1=1,2,---,n; j =

1,2,---,m).

Let us introduce formally our models mentioned above. Suppose that
(Y;,X}),7 = 1,2,---,n are independent and identically distributed random
vectors such that X; = (X0, Xi1, Xi2,---, Xip)" is a (p + 1)-variate random
vector with common distribution function G(-), which is unknown, and there
exists a positive number M such that | X;|| < M with probability one, where
|| - || is the Euclidean norm. In convenience, the reponse variables are coded as

follows: 1fY-—]thenY—1andY:—0(]7é] 53 =0,1--- m).
Now, we turn to the problem of statistical estimation for our model. A
number of estimators for 8 = (B¢, 8¢,---, B! ) are available. However, in this

paper we consider the maximum likelihood estimator (MLE) only.
Given X; = x;, the conditional log-likelihood for a single observation is
given by

L=UB,Gy,x;) = log[P( 1= Yi1, Yiz = Yizy 00y Yim = Yim | Xi = X))
= log[H 7 (85 1 x;)*]

= E yijxfﬁ] log(l + Z exp tﬂj)) (2'2)
J=1 Jj=1
where y;; = 0 or 1 which satisfies Yoy =1,andfor j=1,2,---,m
1
T o -+ Xi ZPY;'ZO X,~=x,-= proy
ol i) = PUG= 01X =) = T A
exp(x!8;)

mi5(B; %) = P(Yi=j | X; =x;) = (2.3)

1+ 32, exp(x{B)
Let 5%7 be a vector consisting of the first derivative of {(3,G : y;,x;) with

3
respect to B3;, then it can be easily seen, using chain rule, that
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0l;
98, = Xi[yi; — mi; (B + %),
J
since it follows from 5%;; = Xu[yi; — 7i;(B; + xi)] 2,---,m; k =
031’27“',1))‘

Hence, for the log-likelihood function ! for our random sample (¥;,X!), ¢ =
1,2,---,n, we obtain the first derivative E;% as follows :

al n 3l
3861 1=1 3?1
1 n I
a | 3

A || Tk
,—1X (Ya — ma (B Xi))
=1 Xl( 12 7!','2(,32 : Xz))

3 =

= (2.4)
?:1 Xi(Y;'m - Wim(ﬁm . X’l)) m(p+1)x1
Therefore, the solution ﬁn of the likelihood equation
ol
—_— 1(B,.,G:Y,X;
. %o (E (6261 X)) =0,
that is,
S X (Vi —mi(B;: Xi)) =0, k=12,---,m, (2.5)

i=1

which can be obtained by an iterative method (see McCullagh and Nelder(1989))

is asymptotically efficient, where B, = (ﬁln,ﬁ%,---,,@mn) Hé;n: (Bjo, le,
) ,ij)a .7 = 1a2,"'7m

The first derivative % does not depend on G, so the efficient score function

for estimating @ when G is unknown is the same as that when G is known.

Since above equations are non-linear, it is impossible to solve them with explicit

form. We will find MLE 3, by using a iterative procedure, such as Newton-

Raphson Method. In general, some typical algorithms for non-linear equations

are introduced in McCullagh and Nelder(1989). From the first derivative 24

96,
we obtain the second derivative matrix V2/;(the Hessian matrix) of order m(p+
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1) x m(p+ 1) as follows :

0% , ,
Vii={——), () =1,2,---,m; k,k=0,1,2,--,p). 2.6)
( 9 0,8]-%,) (4,7 m SRRy (2.6)

Also, each component of the matrix is given by

P _ o o
OB 0B 9Bk OBk
= —zpzimi(B; 1 Xi)[1 — mi;(8; 1 X4)]
#L__ o
OBjwdB;x  OBjinr OBik

= 2w (65 Xi)mip (B 1 Xi)

(G#735 7,9 =,2,---,m; k,k' =0,1,2,---,p). Hence, the information ma-
trix I(8) regarding B, denoted by I(3), is given by

1(B)1x
I(B)n I(B). Symmetric

e =| ¥ (é)z,“ Y (2.7)
.I(,B)ml I(ﬂ)"ﬂ I(ﬂ)mm m{p+1)xm(p+1),

where I(3);; = E[X:X!r;(8; : X)(1—m;(B; : X;))]is (p+1) x (p+1)-matrix,
and 1(B);; = —E[XXim;(8; « Xi)mjr(By : Xi)] = 1(B)jr; 1s (p+1) x (p+ 1)-
matrix (5 # 5’5 7,7' =1,2,---,m). Also, these two matrices I(3;;) and I(3;;/)
are represented as follows :

1(B);; = EXX{(Y;j — mi;(B; : Xi)?]
1(B);; = EIXX{(Yi; — 7i;(85 : Xi))(Yijr — mije(Byr = Xi))]-

The reason is due to the following facts(Lehmann ; 1983) :

0%, al; al;
—F(————2— = B[ —)(——
(aﬂjkfaﬂjk ) { 0Bk )( 0Biw )
27, . .
g O ol . 9,

aﬁj'kfaﬁjk) = £l B (6Bjk )
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(#7477 =12 mkk" =0,1,2,---,p). Out of necessity, we cite the
following important fact( Fahrmeir and Kasufmann ;1985). Assume that a
solution B, corresponding to the equation (2.5) is the maximum likelihood
estimator of 3 for our model.

Lemma 1. Suppose there does not exist a nonzero vector aé— = (ajo, a1, ",

a;p)" and a real number ¢; (j = 1,2,--,m) such that for i = 1,2,--+.n; j =
1,2,---.m
X[V, —m;(8;: X)) = ;.
Then
B,-8%50 (2.8)
V(B = B) =5 Nagan(0,171(8)). (2.9)

Of course, maximum likelihood estimator ﬁr will be derived through the iter-
ative formula

1 ol
k) — atk=1) o Trpoiatk-1) . -1 ; .
B = B + ~[H;(BY)  x)] 73 ls=sti - (2.10)

where the superscript on 3 indicates the iteration number(; = 1,2) and two
matrices H;( B,,;X), 7 = 1,2 are reasonable estimators of information matrix
I(B,) which are to be discussed in the following section 2.2.

2.2. Some Asymptotic Properties

When maximum likelihood estimators of the coefficients in a nonlinear
model such as the logistic model are obtained, there are a number of asymp-
totically equivalent covariance matrix estimators that can be used. These
covariance matrix estimators are typically associated with different computer
algorithms to solve the likelihood equation (2.5). There are at least two natural
ways of estimating the matrix I(3) which inverse is related to the asymptotic
covariance matrix of MLE ﬁn The two estimators considered will be denoted
by Hy(Ba: X) (j = 1,2)

First, taking into consideration the matrix 7(3), we have two reasonable
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estimation matrices Hi(3, X), k = 1,2 for the matrix I(3), which are given
by

Hk(@n; x)ll

Hi(B,;X)ar  Hi(B,; X)22 Symmetric

H(B,;X) = (2.11)

He(Boi X)m1 Hi(Bo;X)mz -+ Hi(Br; X)mm

for j # 5’53, = 1,2,- -, m, where some notations as follows.

#ij = mii(Bjn : X)
P 1& . .
Hq(B,;X);; = ;inxﬁm(l - 75)

=1
“ 1> . .
Hy(B,; X)) = —;EXI‘XEWW:‘J"
i=1
“ 1> .
Hy(B,;X),; = ;ZX,»XZ(Y,-j — #i;)?
i=1
) 1 . )
Hy(B,, : X);; = ~ 2 XiXU(Yi; — #i;) (Vg — #4je)
=1

- at st .t At PO N .
ﬂn = (ﬁin’ﬂmu"'aﬂmn)t? :Bjn = (ﬂjOvﬂjl""’Iij)7 J= 1’21"'3m'

Theorem 1. Under the assumptions of Lemma 1, we obtain the following
two statements; For eachi=1,2, as n — oo

Hi(B, : X) 25 1(8) (2.12)
VAHE(Ba: X)(Br = B) 5 MO, Inpsrempr)s (2.13)
where HE (B, : X)[H} (B, : X)J = Hi(B, : X).

Proof. Consider the j-th matrix H,(8;X),; diagonally of the matrix
Hl(,Bn . X), denoted by Hl(,@;X)J’j = % ?=1 Xin’/T,‘j(,B]‘ . X,)(l — Wij(ﬁj :
X;)) for j = 1,2, -ym. For the sake of convenience, we decompose the dif-

ference matrix [H,(8, : X);; — I(8),,] for j = 1,2,---,m as follows :
Hy(Br - X)j; = 1(B)j; = [Hy(Br : X);5 — Hy(B: X);5] + [Hy (8 X)ii = 1(8);5]
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Fortunately, the second term in the right side of above equation converges
to the zero matrix, denoted by O(p4+1)x(p+1) by the strong law of the large
numbers(SLLN). And by Taylor’s expansion of the multi-variable function,
the first term is .

[H1(Bn : X)j; = Hi(B: Xl = %ixaxik[ﬁij(l — i) — i (1 — m35)]

= ;ZXNXUC[Z ﬁl’n ﬁl’

U#;
Xi( =i + 2757a)
(B — B) X7y — 37, + 27)],

since the (I, k)-th element of the matrix Hl(,én 1 X)y5 can be expanded around
B, w}mere T = Wij([’jn : X;), m; = 7riAj(,Bjn X)), 7y = 75(Ba Xy,
and B;, which satisfies ||3;, — B;|l < [1B;» — B;ll- Since the vector 3, — B8
converges to 0,,(p4+1)x1 by Lemma 1, 3;, — B; converges to zero vector O 1)x1
(7 =1,2,---,m). The ({, k)-th element of the difference matrix [Hl(én 1 X),—
H,(B: X)“] converges to 0 since all the column vectors are bounded from
above except the row vectors (Bjn -84 (7 =1,2,---,m). Hence, the first
matrix [H;(Bn : X),; = Hi(B : X);;] converges to Og+i)x(p+1) and the matrix
Hl(,['jn : X);; converges to I(3),; with probability one (7 =1,2,---, m).

On the other hand, define H; (3 : X);; = —2 ¥, XiXlimi;(8; : X)mip(B;r
X) for j # j'; 7,5/ = 1,2,---,m and consider the following decomposed ma-
trix:

Hy (B : X)j;—1(B);5 = [Hi(Bn : X)j5—Hi(B : X);5)+[H1(8 : X);—1(B),5]-

Then, the second matrix in the right side converges to O(,41)x(p+1) by SLLN
and the (I, k)-th element of the first can be expanded by Taylor’s expansion as
below :

[Hl(/gn . ) Hl(ﬁ ]] ]I,k
- Z XaXip[frijtije — migmiji]

z“l

= —_lelxik{ Z ﬂl’ - /31’) X, ( 27"1]771]’7‘-11’)

JAI#S
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+(Bjn — B) Xiliyig — 271 i)
+(Bjim = Byr) Xi(Fijityye — 27572)},

Where 7?'1'_,' = ”ij(Bjn . X,‘), T = 7r,-j(,3j . Xi), 7~r,'j = 7(',']‘(,33-” : X,-),and Bjn
which satisfies ”Bm -85l < ”,3]" - B for 5 = 1,2,---,m. And the vec-
tor ﬁn — B converges to O.n(p+1)x1 vector as n converges to infinity. All the
(I, k)-th elements of [H;(3, : X)j» — Hi(B : X);;] converge to 0 since the
column vectors are bounded from above except the row vectors (,Bjn - Bj)t,

(j = 1,2,---,m). Hence, the first matrix [H,(3, : X)jy = Hi(B : X);;1] con-
verges to the matrlx O(p+1)x(p+1) »and the matrix Hl(,Bn : X);;» converges to the
matrix I(B);; with probability one (j # j'; j,5' = 1,2, - m). Consequently,

we obtain the following result by above fact, Lemma 1, and Slutsky s Theorem :

\/ﬁHf([jn : X)(8, - B) -5 Nowo41)(0, Lo 1) xm(p41) ) -

Similarly, the results related to the estimation matrix H(3, : X) would be
proved. 0

3. BOOTSTRAP APPROXIMATION

3.1. Bootstrap Algorithm

Suppose (Y;,X!), i = 1,2, -, n are independent and identically distributed
random vectors. Then, bootstrap estimators would be considered by the em-
pirical c.d.f G, (-) computed from the covariates X;, 1 = 1, 2,---,n and MLE
8,. The bootstrap algorithm goes as follows:

e Step 1 : From the original sa,mple (Y,,X ), 1= 1 2,--+,n, compute the
MLE ﬁn of :B where ﬂn - (ﬁln? :ana e ﬂmn) ﬁ - (ﬂ]Oaﬂ]la Ty 6jp)7

and then construct an empirical distribution function, G, (-) based on
the covariates X;’s.

X3

e Step 2 : Choose X* = [(Yl.) ( ),' ( )] from the fitted model P; _,
where 6, = (Gn,,@n as follows. Let XI,:

= 1,2,---,n be a bootstrap
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sample of size n from Gn(-), that is, a simple random sample with replace-
ment from (X, X3, -+, X,). Then given X} = x}, choose Y} having the
following distribution function (: = 1,2,---,n; 7 =0,1,2,---,m):

P(Y1 =47, Y5 =y, Yim = 4o | X7 =x7) = [[[mi(Bjn - XD™,

= (3.1)

where y¥; = 0 or 1 which satisfies 3725 y7; = 1, and

. . exp(X:6;,
Tii(Bin : X7) = m( : Zt‘
1 + Zl:l exp(xi ﬂln)
which satisfies 72, Wij(ﬂ;'n : X)) =1.

fY;=1and Y} =0 forj # 35,5’ = 1,2,---,m, then we denote it
by Y =.

Step 3 : From the bootstrap sample X* = [G/(l:.), (;22;), e GE’%)], com-

pute the bootstrap MLE ,B:L That 1s, 'B: is the solution of the following
non-linear equation :

=1

3.2. Some properties of bootstrap estimators

" Define the log likelihood function as [*(8) = Y, (B : Y*,X}), and the

first derivative l*(,@) = g’gg—), and the second derivative l*(ﬂ) = 20P)

2853 in

bootstrap version. Let N.(3) be a m(p + 1)-dimensional open ball in R™#+1)
centered at B3 with positive radius € for convenience’s sake. After proving three
lemmas we will present Theorem 2.

Lemma 2. As n — oo, we obtain

1 . .
Tl (Bn) L5 Nmipa)(0,1(8)). (3.3)
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t
Proof. For any vector of constants a = (af,a},---,al)", a! = (a;1,a;2,

ey Gipr1); J=1,2,--+,m, we get

\/iﬁa’i*(ﬁn Z

where U, = TZ D ) & Wij(Bjn :X7)], (:=1,2,---,n). Then we ob-
tain the conditional expectatlon E(U},) and the conditional variance Var(U})
given X and Y as follows :

E(U) = EWULIX,Y) = E[E(ULIX])]

1 [ m y *
= \—/_EE ; [ — (B : X7 | Xi]]

1 m A *
= 2F ; PP =51%0) - mj(ﬂjn:Xi)}}
=0,

Var(UL)
= Var(U3,|X,Y) = B(U;) = E [E(UZ2X))]

=£ [ [ Z Z XY — mij(Bjn : XDV — mije(Bjom : X?)]X?’aj'IX?H

J IJl—

1 Pt > * . *
= ;E Z al XX a;mi;(B;, : X1 — 7i(B;, : X])]

i=1
- Z Z a;X;X’;ta]"ﬂ'ij(:Bjn : x;)ﬂ','j:(ﬁj;n : X:)}
j—l J'#)
1 n m “
- l Zajx X! a]7l’,_7(,3 : XH[1 - T (B Xi))
n n 1=1 ]=1
1 n m m R .
= [Z Z a‘Xinaj:mj(ﬂjn : Xf)m‘j'(ﬁj'n : Xf)”
n .
=1 | g=1j'#5
m m
Z Z a; H1(Bn : X)jj0a;
j=1j3'=1

(81,82, vt ’am)Hl(ﬁn : X)(ai’aé’ Tt ’a:n)t
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1 .
= ;atﬂl(ﬂn : X)a,

since X}, ¢ = 1,2,---,n’s are independent and identically distributed with
empmcal cdf G, condltlona.lly on the original sample X;. Furthermore,
E(|U?) is bounded from above for any 3,(8, € N.(B)) as follows :

BV < 270
n/n
And as n — oo, since a'H;(8, : X)a ual a'I(3)a, we obtain the following
relationship :

ZE(l /53 m\/mMallaHS Al S 0’

VR (A, X)a)
where S2 = ¥, Var(U},) = a'Hy(3, : X)a. Consequently, the Lyapounov’s
condition for the triangular array is checked, which completes the proof of
Lemma 2. i

3
2

Lemma 3. As n — oo, we obtain

,E;: -8, > O (p+1)x1- (3.4)
Proof. Note that [*(3%) can be expanded around 8, as follows:

(1) = I"(Ba) + (B - B) T(87), (3.5)

where ,5; lies on the line segment joining B, and ,é; Then the equation (3.5)
can be rearranged as

(B - B.) [ (8] = —I*(B,),

since l"(ﬂ ) = 0 by the previous assumption. Note that
(i) 1l*(ﬂn) — 0 as n — oo by Lemma 2 ;

(ii) —1/*(32) tends to a positive definite matrix with probability 1, since
(X,Xf) exists and 5(01,92, ,0,) = —b%———f&,——l for j,j/ = 1,2,---,m

is bounded from above such that b(6y,60z,---,0n) = log(1 + 7., e%7), and
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0, =X:'B; j=1,2,---,m, |X;|| £ M, 8 € B(Lehmann;1983).
From (i) and (ii), the result follows. o
Lemma 4. As n — oo, we obtain
1 "* ~*
_;l (:37,) — I(ﬁ)m(p+1)xm(p+])- (36)

Proof. Note that —%l‘(ﬂ) = Hy(B : X*). Then the (I, k)-th element of
difference matrix [Hy(8, : X*) — Hy(8, : X X)]j; is represented as 2 "%, W,
(G=12,---,m; ,k=0,1,2,---,p), where W2, = W2 (I, k) = X; X,kru(ﬂ
XD = 5(B0 + X0)) = BIXGXG, 73i(Byn ¢ XD)(1 = wis(Byo : X)) And
we define W, = W,.(,k) = X,IX,kﬂ,](ﬂJn X1 —m(By - Xi)), W, =
L w 2i=1 Win. For some constant K, the following inequality holds with proba-
blhty one :

Var(Wy) = Var(W,|X,Y) = E(W;2) — [E(WS))?
= E[x,,xwm,(ﬂ]n X = 7B X)) - (W)
= "E[thxzkwu(:a]n Xi)(1 = 75(B,, - X)))? — [W,]?

1._.1

= —Z <IX

=1

Therefore, as n — oo, Var(: S5, W) converges to 0. Since all the (I, k)-th

elements of the matrix [Hy (3, : X*),;— Hy(B,, : X);5] converge to zero 0 by the
weak law of large numbers(WLLN), the matrix [H; (8, : X*);; — H(B, : X)

converges to O 41)x(p+1) Matrix (j = 1,2,---,m). Now, we write

(:B; )JJ 1B )JJ
= [H\(8;, X)Jj_Hl(,Bn- ")is)
1

JJ]

[ n - X*)Jj - Hl(,Bn : )JJ] + [Hl(ﬁn . ) I(lg)jj}'

The first term tends to a matrix of zeros by applying Taylor’s expansion (see
the proof of Theorem 1), Lemma 3, and B: which satisfies 182 — B <

||,3 ,3n|| And the third converges to the zero matrix 0(p+1)x(p+1 by Theo-
rem 1. So Hy(B* : X*);; converges to 1(B);; (7 =1,2,---,m). The (I, k)-th

13
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element of the matrix [Hy(8, : X*);;7 — Hi(Bn : X);;] is given by LT M
(] #jlv j’jl = 1,2,"',771; lak = 071727""1))7 where

M,
- Mtn(l l”)
= “'lexzkwlj(ﬂj X*)Trl]'(ﬁ]n X*)_*'L[X X:lcﬂ-lj(rs_]n X*)Trl]’(ﬁj 'n 1 X; )]

Similarly, we can easily prove that Var(M}) is bounded from above and
Var(: i, M) converges to 0 as n — oo. Since the (1, k)-th element of differ-

ence matrlx [Hl(ﬂn : X*)“: — Hl(,Bn : X);;7] tends to 0 by WLLN, the matrix
[Hy(Bn : X*)j50 — Hi(B. : X);j] converges to a matrix of zeros Og41)x(p+1)-
Now, we decompose [H;(32 : X*);;» — I(8);;+] into three terms as follows:

[Hl(ﬁ~ X*)JJ I( )JJ]
= [Hi(8}, : X");jr — H1(Bn : X7);5]
[Hl(ﬁn : X*)JJ' - Hl(ﬁn . X)JJ ] [HI(IB X) M I(ﬂ)u ]

The first term tends to zero matrix O(,41)x(p+1) by Taylor’s expansion (see the
proof of Theorem 1), Lemma 3, and ,3~* which satisfies |82 — 8.l < ﬁ* ﬂn||

Hl(ﬁ; : X*);;» converges to I(8);; in conditional probability (j # j', 7,7’
1,2,---,m) since the third tends to zero matrix Ogpy1)x(p+1) by Theorem l

Therefore, —%l*(ﬁ;) converges to information matrix /(3) in conditional prob-
ability. ]

Theorem 2. In addition to the assumptions of Lemma 1, suppose that

there exists F(X;X!) which is positive definite. Along almost all sample se-
quences, given the original sample, as n — oo,

V(B = Br) =5 Nogpan)(0,174(B)) (3.7)

Hi(B; : X") I(B)mp+1)xmp+1) (3.8)

1. N " .
\/ﬁf:[i2 (:3; : X*)(ﬂ: - an) "d_’ m(p+1)(0’Im(p+1)xm(P+1))’ (Z = 152) (3‘9)

where the starred items lmply the bootstrap versions of the original ones, and

fori=1,2 HE(*: X")[H}(G: : X)) = Hi(B : X~).



JoongJae Cho, JeongHye Han 15

Proof. Consider the fact (3.6) to prove the result (3.7) again. That is,
. ~ . N - "t~
(8;) = 1"(Ba) + (B;, — B) I*(8;,),
where Hﬁ; — B, < ||ﬁ§; ~B.||. The following equation is now eé,sy to obtain

) NP 1 - -
- n —=I(B2)] = —=I* n
VB - B (- F (B0 = —=H(y)
by using l*(,['j;) = 0. Consequently, we obtain that the result (3.7) follows
from Lemma 2, Lemma 4, and Slustky’s Theorem.

To prove (weak) consistency of Hl(,é:‘l : X*), define Hy(B: X),;; = + T8,
Xt Pl - P (B X)) = —eXB))
X, X! P;j(1 — P;;) where P;; = m,;;(8; : Xi) = 5 aanXiB) Then, we can

decompose it as follows :

H\(B;: X%);; - 1(8),,
ﬂmw;r»—mwwrm] A
+H (B - X7)j5 = Hy(Bo : X)) + [Hi (Bn - X);; = 1(8)].

By Taylor’s expansion, the (I, k)-th element of the first matrix is as follows :

[Hy(B;: X"),, — Hi(By : X7) Jue = —fozxfk (7 (1 = &) — mi5(1 — 7))
1—1
= ;Zxﬁ Z(ﬂz' ,31'
i=1 U#i

Xf(—fr,-ﬁr,-p + 27?"2]7"[‘,1/)
+(B5, — Bjn) X (73 — 377 + 277)),
where 7?',']' = Wij(?;n . X:), T = Wij(Bj‘n : X*), 7?,1 = 7!',](3* : X:‘), and ﬁ
which satisfies ||ﬂ;n - Bl < ||ﬁ;n -3 The difference vector ﬂ — 'Ban

Jn”

converges to zero vector, Opt1)x1, (J = 1,2,---,m) since the vector ,B:L -
B, tends to Op,(p41)x1- Hence all the column vectors except the row vectors
(,BA;n - ﬂ;n) (j =1,2,---,m) are bounded from above. That is, it follows that

all the (I, k)-th elements of matrix [Hy (87 : X")ii— Hy(B, : X~ );;] tend to 0.

Consequently, we conclude that the matrix [Hl(;é; 1 X") — Hy(B 1 X*);5
converges to a matrix of zeros O(,+1)x(p+1)-
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To prove the second matrix [Hy(8, : X X*);— Hy (8., : X),;] converges to a
matrix of zeros 0(p+1)x(p+1) is the same procedure as the proof of Lemma 4.
The third [Hy(8, : X),; — I(8),;] converges to zero matrix O(p+1)x (p+1) by The-
orem 1. Therefore, the bootstrap estimation matrix Hl(,BA;‘; : X*);; converges
to the matrix /(3);; in conditional probability (j = 1,2,...,m). Now, we
define H (8 : X);p = -—% i XiXiPPy (3 #3557, =1,2,---,m) where

P =7;(8;: X)) = 1+Eeg,(§§£f 35 Consider the following decomposed ma-

trix :

H\(8; - X7) 5 = 1(B)
= [Hl(ﬁ;; : X*)jj' - Hl(:gﬁ : X*)j]"] )
+[Hi(Br : X7)j50 — Hi(Bn : X)jir] + [Hi (B : X)j50 — 1(B);57].

The (I, k)-th element of the first term would be expanded as follows :

[Hl(ﬂ t X" = Hi(Ba - X7)j5lun
= —— Z Xl[X [7!'” Wi — TigTig ]

l
= ——ZX Z (ﬂu — Bt X (=277 7)
n nﬂ’#:

A** *( _~ o~ 2* “ trx/ ~ =~ ~ o~
(B} — Bo) X5 (Tistiy — 255 7550) + (B — By ) X (W Frige — 277550,
where #;; = m;i(B;, + X7), mi; = 7B, + X7), 7 = (B, 1 X5) L Bl
which satisfies ||8;, — 8./l < |18;, — B
the first term converges to O(p11)x(p+1) Matrix since 3, — 3, converges to a
vector of zeros 0 (p+1)x1. That is, all the column vectors except row vectors

(8 in ™ ]n) (j ,-++,m) are bounded from above. So all the (I, k)-th
elements of matrix [Hl(ﬁ; P X*) = H\(B, : X*),;] tend to 0 as n — oo,
Hence, the matrix [H,( B* X*),; — Hi(B, : X )“] converges to a matrix of

zeros O(p41)x(p+1)- L0 show the second matrix [Hy (B, : X*);5r — Hy (B, : X);i]
converges to a matrix of zeros, 0(p+1)><(p+1 is the same as Lemma 4. The thnd

inll = 1,2,...,m). Fortunately,

difference matrix [H: (3, : X);»— I(B);;] converges to zero matrix O(p+1)x (p+1)

by Theorem 1. Hence the matrix Hl(B; : X*);;» converges to the matrix
1(B)r (5 #3'5 4,7’ =1,2,...,m). Consequently, it follows that the bootstrap
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estimation matrix H, (,3: : X*) converges to the information matrix I (8).
On the other hand, by above two facts and Slutsky’s Theorem, we obtain
the following result (3.9).

l A xR AR A
\/Eng (IBn : X*)(ﬂn - ﬂn) _'d_’ m(p+1)(07 Im(p+1)Xm(p+1))

For the case Hz(B; : X*), it suffices to apply all the similar procedures rou-
tinely. o
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