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Estimation of Spatial Dependence with GEE
Yoon DonG Leg! , HYEMI CHoI?

ABSTRACT

We consider an efficient parametric estimation method of spatial depen-
dence in weak stationary processes. Spatial dependence is modeled through
variogram and correlogram. Most of parametric estimation methods of cor-
relogram use two step method; nonparametric estimation and parametric
integration. We bind these two steps into one step by using GEE method
instead of least squares type optimization. Our one step method is more ef-
ficient statistically and gives a clear interpretation of related concepts used
in traditional two step methods.
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1. INTRODUCTION

In spatial models, usually the dependence of stationary spatial process {Z(s) :
s € IR%} is described by 2y(h) = var(Z(s+h)—Z(s)) or p(h) = E(Z(s+h)Z(s)),
which are called as variogram and correlogram respectively. Note that 2y(h) =
20%(1—p(h)) when o? = var(Z(s)). For variogram estimation, various easy-to-use
methods have been proposed.

The methods proposed by Journel and Huijbregts (1978) and Cressie (1985)
are divided into two steps, the nonparametric estimation step and the parametric
integration step. In the first step, they estimated variogram for a preselected set
H = {hy,...,hg} of lags by the Matheron’s estimator (1962) which is the average
of the squared differences (Z(s1) — Z(s3))? for all possible pairs of the observed
values Z(s;) and Z(s2) satisfying s; = so+h for 81,32 € D, the sampling region.
In case of irregularly spaced data, Matheron’s method is modified as follows: let
T(h) be a predetermined set of lag h’ regarded to be h approximately and average
the squared differences at the pairs satisfying s, = s + h', h' € T(h). In the
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second step, the model variogram 2+(h;3) defined through the parameter 8 is
estimated by plugging E , which is obtained by versions of least squares estimator
(LSE), based on 29(h), h € H at the first step .

In this paper, we propose one step estimation method of correlogram p(h; 8),
directly using the squared differences Y (s1, s2), (s1,82) € D2 More efficient
estimator ﬁ than traditionally used LSEs is proposed, which is based on general-
ized estimating equation method and its asymptotic properties are shown in this
paper.

The generalized estimating equations (GEE) suggested by Liang and Zeger
(1986) provides a general tool to handle non-normal dependent data. Albert
and McShane (1995) applied GEE to the estimation problem for binary spatial
data. They considered the estimation of the mean structure and dependence
structure simultaneously by iteratively solving the two estimating equations: one
for mean and the other for dependence. They suggested two step method for the
dependence estimation.

This paper is only concerned with dependence estimation. The proposed
method is expected to be more statistically efficient than the two step estimation
methods, since it reduces the loss of the captured information in the first step
of the two step method. Moreover, this one step method reduces ambiguity and
arbitrariness in selecting the set H of lags of interest and the tolerance region
T(h), h € H. The major difficulties in handling Y (s1, s2), (81, 82) € D? directly,
instead of the estimated variogram 29(h), h € H, reside in the non-normality of
the quantity Y'(s;, s2) and dependence among the quantities.

Throughout the paper, we assume that process Z(-) is normally or nearly
normally distributed with the mean 0 and the finite variance o2. We describe
the proposed method in section 2. The statistical and computational methods to

reduce the computational burden are also outlined.

2. GEE FOR CORRELOGRAM ESTIMATION

When the process Z(s) is Gaussian with mean 0 and variance o2, the squared
term Y (81, 82) = (Z(s1) — Z(s2))? has a chi-squared distribution with one degree
of freedom and a scale parameter 2v(s; — s2;8), B € RY, i.e. Y(s1,82) ~
2v(s1 — 82; ) - x*(1). The mean and the variance of Y (s1, s3) are 2v(s; — s2; 8)

- 270 -



Yoon Dong Lee, Hyemi Choi

and 2{2v(s1 — s2; B)}?, respectively. The correlation r((s1, 82), (s3, 84)) between
Y (s1,s2) and Y(s3, 84) is expressed in terms of the correlogram p(h) as follows:
{o(s1 = 83) + p(s2 — s4) — p(s1 ~ 84) — p(s2 — 83)}*
r((s1,82),(83,84)) =
({o1,92), (85, 54) 4{T = p(s1 — s} {1 — pls3 — 1)}

(2.1)

By modeling p(h) with respect to a parameter 3, r((s1, 82), (83, 84)) depends

on B, say r((s1, s2), (83, 84); B). For notational convenience, let [s;, s2] be (81, 82)

or (sg,s1), and Y[sy, s2] denote Y (s1, s2) or Y (s2, s1), noting that Y (s1,s2) =

Y (s2,81). Now, consider Y[sy,s2] only for the paired sampling sites between
which the distance is less than a fixed constant A,

Dp = {{si,8j] : 0 < d(si,s;) <A, s;,8; € Dy}

where [s), s2] denotes the pair of two points sy, 8 satisfying s; < so with a
complete ordering < on D, and d(-,-) is a metric defined on R¢ x IR%. A set
D, of sampling sites denotes D of which number of elements is n. Let ny be
the number of elements contained in D). When we define Y to be the vector
of Ys corresponding to all paired sampling sites in D) in an order defined on
D,)l‘. Note that Yﬁ is a ny-dimensional vector. The fixed constant A plays a role
of the maximum lag. As in time series analysis, the maximum lag can be an
appropriately defined bounded value regardless of sample size n (¢f. Box and
Jenkins, 1976, p33). Thus we assume that ny = O(n).

The expectation pu,(8) and the (scaled) covariance V;(8) of Y are given by

1, (B) =20%{1 — p(s; — 8;;8)}, an ny x 1 vector,

Va(B) =An(B)Rn(B)An(B), an ny X ny matrix,
where 3 is a g-dimensional vector of unknown parameters, R,(3) is an ny x n)
matrix of which elements are r([s;, s;], [sk, 81]; B), [84, 851, [8k, 8] € D), and A, (B)
a diagonal matrix with diagonal elements (1 — p(s; — s;;3)) and all off-diagonal

elements zero, defined along the same order of index used in defining Y;\l.

Now, the generalized estimating equation for our model is defined as

Un(B) =TE BV HB) (Y ) — 1a(B) =0 (2.2)

where ', (8) is a ny X ¢ matrix of which rows are defined to be (8/98){p(s1 —
s2;B)} for all [s1, s9) € D).
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The solution ﬁn of (2.2) is obtained by the Gauss-Newton type iteration,

obtained from Fisher’s scoring approximation,
’Bnew — ﬂold _ (1/20_2) . Mn_l(,BOld)Un(,BOld) ,

where M, (8) = I'Z(B)V,71(B)Tx(B), as given in McCullagh and Nelder (1989).
The asymptotic covariance matrix of Bn is 2M,71(8). The consistency and asymp-

totic normality of GEE estimator ﬁn of the true value 8, are obtained as follows.

PROPOSITION 2.1. Under mild reqularity conditions, Bn — B, in probability
as n goes to oo, and \/ﬁ(,[:}n — B.) is asymptotically multivariate Gaussian with

zero mean and covariance matriz
— 1 -l
2(B.) = lim 2n-M™(B,)
The proof is based on the relations

cov(Yy) = 2(20%)2V(B,), E(UsU) = 2(20°)*M(B,)
E((8/0B)Uy) = —(20%) M (B,)
cov(vnf,) = {E((9/08)Un)} 'E(UaUN){E((8/08)Un)} ,

which follows from the view point of the standardized estimating function in
Heyde (1997) and covariance of quasi-likelihood estimators for dependent ob-
servations in McCullagh and Nelder (1989, p332). The result needs the mix-
ing property defined on the process Z(-) and so does on Y (-). Otherwise, it is
shown analogously to Liang and Zeger (1986) under m-dependence condition.
The proposition was stated in the view point of increasing-domain asymptotics,
in which the region where the process is observed is increased as the number of
observation increases, as usual in asymptotics of time series. In spatial setting,
other asymptotics such as infill-domain asymptotics and mized-domain asymp-
totics are possible to consider, of which details are found in Lahiri, Lee and Cressie
(2002) and Lahiri (200x).

The main difficulty in estimation of Bn is the computation of a large matrix
Vo(B) and its inversion when n is quite large. To reduce the dimension ny of
Y’n\, taking smaller A\, or more generally performing the proposed method on a

smaller subset ’5,’) of D,)l‘ seems possible without any difference in related results.
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The elements of the set 15,); are selected by one’s preference as for the selection of
the set H of lags and the tolerance region T'(-) in LSEs. However, for the purpose

of formalization we use the set D;) and Y';, themselves.
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