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ABSTRACT

We consider the iterated bootstrap method in regression model with
heterogeneous error variances. The iterated wild bootstrap confidence
interval of the mean response is considered. It is shown that the iter-
ated wild bootstrap confidence interval has coverage error of order n~?
whereas percentile method interval has an error of order n='/2. The
simulation results reveal that the iterated bootstrap method calibrates
the coverage error of percentile method interval successfully even for the
small sample size.

KEYWORDS: Iterated bootstrap, Wild bootstrap, Heterogeneous er-

ror, Mean response, Edgeworth expansion.

1. INTRODUCTION

The iterated bootstrap method has been known as a powerful method in
interval estimation. It can be used to estimate the errors which arise from a

single usage of the bootstrap and to correct for them. So, in interval estimation,
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it reduces the coverage error incurred by the usual percentile method interval.
In i.i.d. case, many authors have shown that the iterated bootstrap calibrates
the confidence coefficients driven by the percentile method very successfully.
In general, Hall and Martin (1988) showed that the iterated bootstrap method
reduces the coverage error by the factor n™! in two-sided case and by the factor
n~1/? in one-sided case.

In this paper, we consider the performance of iterated bootstrap in inde-
pendent but not identically distributed case, especially in regression model.

Consider the linear regression model with heterogeneous error variances:
Yi=Fo+ Pizii+ -+ Bptpi + &, 1=1,...,1m,

where 8 = (Bo, - - -, Pp)" is an unknown regression parameter and ¢; 1s an error
term with mean 0 and variance ¢? for each ¢. In this model, our main con-
cern is in the interval estimation of the mean response yo, yo = £, for some
fixed &y = (1, z10,.- ., Tpo)t. In this setting, the ordinary bootstrap method
is also applicable, see Liu (1988) page 1707, but the ordinary bootstrap can’t
reflect the heteroscedasticity of the error part. So, we use the Wu'’s resampling
method, so called wild bootstrap, to reflect the heteroscedasticity of error parts.

It is shown that, in this case, the iterated wild bootstrap also reduces
the coverage error by the factor n~1/2 in one-sided case, as in the i.i.d. case
iterated bootstrap. The result can be driven by using Edgeworth expansion
and Cornish-Fisher inversion. To assess the small sample performance, some
simulation study has been carried. In the simulation study, we adopt the
saddlepoint approximation method to reduce the computing time due to the
nested resampling in iterated bootstrap.

Iterated bootstrap method was introduced by Hall (1986) and Beran (1987)
in interval estimation context. More unified approach can be found in Hall and
Martin (1988), see also Hall (1992). The wild bootstrap was suggested by Wu
(1986) in regression model with non-homogeneous errors. Some asymptotic
results on wild bootstrap can be found in Liu (1988) and Mammen (1993).
Davison and Hinkley (1988) suggested the use of Daniel’s saddlepoint approx-
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imation method to replace Monte Carlo resampling in bootstrap distribution

approximation.
Section 2 describes the iterated wild bootstrap confidence interval for the

mean response., In Section 3, the coverage property of the iterated wild boot-
strap i1s examined. Section 4 provides the results of the simulation study to

get the insight of the small sample performance of the proposed procedure.

2. THE ITERATED WILD BOOTSTRAP
PROCEDURE

2.1 Wild Bootstrap

Assume the the data X = {(zy,..., Tpi,¥i), ©=1,...,n} are generated

by the model :

Yi = Bo+ Brzui + - + Bpapi + €,
where f;’s are unknown parameters and ¢;’s are independent random variables
with mean 0 and variances o?. Let ﬂ , Yo denote the least square estimates of
B, yo from X, respectively, where y, is the mean response at (Z1g, ..., Zy).

Define the residuals é; as follows :
o P X
&=yi—Bo— ) 20
J=1

Conditional on data X, wild bootstrap samples of error parts £* = {&, =

1,...,n} are defined as follows :
& = Z; - &, (2.1)
where the random variables Z;’s satisfy the following moment conditions;
E(Z)=0,E(Z})=1,E(Z2}) = 1.

Then we get the wild bootstrap samples of the responses as follows;

p
* Ak .
yi=,30+zwﬁ,3j€i, z:l,...,n,
=1
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and X* = {(z14,...,%pi,y7), t=1,...,n}. Applying least square method to
the sample X'*, we can compute the bootstrap versions B*, ug-

In this setting, a percentile method interval which is based on wild boot-
strap resampling, with nominal coverage o can be constructed as follows. Let

g be the solution of the following equation
Pljg < dplX} =8,  0<f<],

and take I, = (—o0,4,) as an one-sided confidence interval for yo. In Section
3, it is shown that this percentile method interval, I, produces a coverage

-1/2

error in of order n as n gets larger.

2.2 Iterated Bootstrap

Although the wild bootstrap interval I, has correct coverage asymptoti-
cally, the coverage error in finite sample may be significant. So, some calibra-
tion method to adjust the coverage error might be helpful. For this purpose,

we use the iterated bootstrap method to estimate the true coverage
(o) = P{yo € L}

of the percentile method interval I,. Let #(a) be the estimate of 7(«), then

we can find the solution & of the equation
(&) = a. (2.2)

Then, take I5 as our final iterated bootstrap interval.
The bootstrap iteration idea for estimating #(«) in equation (2.2) is as

follows : With the notations in previous section, define é and € by
* 12

& = Y, - z; 83,

= Zik, yr=afre

where z; = (1,21,...,2p) and X** = {(z},y*), ¢=1,...,n}. Applying
least squares method to re-resample X'**, we obtain the second level bootstrap
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estimator §3*. Let 4} be the solution of the equation
Plggm <apglx*} =5, 0<p<1
and take I} = (—oco,4%). Then we estimate 7(a) by
T(a) = P(go € I7]|X). (2.3)

From equation (2.2) and (2.3) we can obtain &. So our final iterated bootstrap
confidence interval is /5. The detailed implementation method can be found in
Hall and Martin (1988) and Hall (1992). The final interval I, has the coverage

~! as shown in Section 3.

error of order n
2.3 Saddlepoint Approximation

In iterated bootstrap to estimate #(a) in (2.3), usual Monte Carlo approx-

imation method needs nested resampling to estimate

P(i5" < o] X). (2.4)

So, the saddlepoint approximation method may be used to reduce the com-
puting time in estimation of (2.4). The saddlepoint approximation of (2.4) is
given by :
cwx o A 1 1
P(§5" < ol ¥) ~ @(€) + ¢(o{g - ;},

where
£ =sgn(A) - [2n(Ajo — K™(A))], 7=\ [nK*"(A)]/?
and A is a solution of
K*’(/\) = Yo.

Here, nK*(t) is the cumulant generating function of §** evaluated at nt.
For simplicity of numerical computation, we can use the following approx-

imation formula of K*(t), as in Wang (1990),

” Nk, nk n3k )
K*(t) ~ th + { e 2%+ 244t4} exp[—t2 / (Snng)],

355
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where «; denotes the j-th cumulant of y5*.

3. COVERAGE ACCURACY OF THE ITERATED
WILD BOOTSTRAP PROCEDURE

In this section, we briefly sketch how the magnitude of the error in boot-
strap approximation can be derived by the Edgeworth expansion. Detailed
rigorous argument in i.i.d.-case can be found in Chapter 3 of Hall (1992).

First, consider the Edgeworth expansion of the bootstrap distribution of
o and ¢5. The least squares estimator go can be expressed in the form of
Ly wY;, where w = (wy,...,wn) =n - LH(X' X)X, Let u = E(wY;), 77 =
Var(w;Y;) and 72 = £ 3 72. Denote /n(jo — ¥0)/7, v/7(J0 — yo)/7 by S, and
T, respectively, and its bootstrap versions are denoted by S* = +/n(¢3—90)/7,
T* = v/n(§4 — Jo0)/7*. Then the following conditions guarantee the Edgeworth

expansion of the distribution of ¢ and g; :

(Cl) Ee™® < K < oo for s > 4 and all j, in addition, ¢;’s satisfy Cramér
condition:
limsup |Ee™| < 1

[n]—00

and assume cn < 0} + -+ + 02 < Cn.

(C2) The design matrix X is of full rank, and

. 1 &
limsup =) _ || zi |’< oo for s > 4,
n

—oo T i=1
where z; is the i-th row vector of design matrix X.

(C3) Let A, = smallest eigenvalue of X’X and M, = max{|| z; ||,¢ =
1,...,n}. Then,

liminfA,/n >0, M, = O(n") for some v € [0,1/2).
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(C4) Z;’s in (2.1) satisfy Cramér condition:

limsup |Ee?| < 1

[7]—o0

and £Z, =0, EZ} =1, EZ} = 1.

Under the conditions (C1) through (C3), it is well known that the following

expansions hold:
P(§ <) =8(z) +n"V’pi(2)(2) + O(n7"), (3.1)
P(T <) = 8(z) + n""2,(2)d(z) + O(n™), (3.2)

where pi(z) = n™2 15, /673(1 — 22) and ¢:1(z) = n"V25,/673(22% + 1) and
fisn = L3 E(w;Y; — p;)® and ®(z), ¢(z) denote the standard normal distribu-
tion function and density function, respectively. Moreover, we can obtain the

following Edgeworth expansion of the bootstrap distributions.

Theorem 1. Under the conditions (C1)-(C4) the following expansions
hold.

P(§" < x) = ®(z) +n V2pi(2)g(z) + Op(n™), (3.3)

P(T* < z) = &)+ n 241 (2)p(z) + Op(n7"), (3.4)

where p;(z) and §(z) are polynomials with population moments in p1(z) and

q1(z) have been replaced by sample moments.

Proof. We only show the validity of the Edgeworth expansion for non-
studentized case, with s = 4 in (C1). As Liu (1988) pointed out, the main
difficulty lies in establishing

sup [T] Ezexplin(¥; — 48 7;)| = o(n™?) as.

e<n<M ;-
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Following Liu(1988)’s argument on page 1705-1706, it suffices to have &, of
the |Y; — :c;-,C:l|’s exceed some positive & for sufficiently large n with k,/logn —

oo a.s.. This can be achieved by showing that , for sufficiently large n,

max | Y, — 2/ |< 2v/n [ logn  as.

1<i<n

Note that
P(lrg_a<x | Y; — 28 |> 2/nlogn)

< P(max | Yi— 28 | + max | (8 — B) |> 2v/n/logn)

- 1<i<n

< P(max | Y —=if [> Vn/logn) + P(max | zi(B = #) |> v/n/logn)

- 1<ikn

= O(n~'7") for some v > 0.

The last identity follows from Markov and Bonferroni inequality with the mo-
ment conditions (C1), (C2) and (C3). So, by Borel-Cantelli lemma, we have,

for sufficiently large n,

max | Y; — /8 |< 2v/n/logn as.

1<i<n

From Theorem 1 and the fact the p; — p1, §1 — q1 are both O,(n~Y?), we

have
P(S* <z)— P(S<z) =0,(n7"), (3.5)
P(T* < z)— P(T < z) = 0y(n7Y). (3.6)
Therefore we have, from (3.5) and (3.6),
P(js < z)— P(jo <z) = &(a/?)+n"pi(a/?)d(2/?)

—{8(e/7) + 0 pi(2/7)p(z/T)} + Op(n™")
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= O(z/7) = 2(z/7) + Op(n7")

0,(n"1?).

Thus the percentile method wild bootstrap estimates of quantiles are first order

correct.
Finally, we briefly establish the coverage error of iterated bootstrap. Let
X) = f. Then, from (3.3) and (3.4), we have

g be the solution of P(g5 < dig

G = o+ n" 5 {zs + 0V h1(25) + Op(n™h))

and
a5 = g5+ nT 28 {zp + n 2Py (25) + Op(n)).

Let t and £ satisfy that P(yo < @) = o and P(g0 < 44]X) = a respectively.
Then,

t = a+n"Y2 71 (20)b(20) + O(n7Y)

and

>
!

o+ n_ll/?'??u(za)(ﬁ(za) + Op(n"l).

Hence, { — t = O,(n™?). So @; — iy = Op(n~'). From this, we obtain
Plyo € Is} = Plyo < iy}
= P{yo < a4} +0(n™)

= a+0(n™).
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4. RESULTS OF THE SIMULATION STUDY

We use now simulation to examine the small sample performance of iterated
wild bootstrap interval. We consider simple linear regression model, y; =
a+ Bzi+€,i=1,...,nfor n = 10,20 with z;’s are uniform grid on [0, 1] and
the interval estimation of the mean response yo = & + o, for selected values

of zo. Simulation study uses the following four error distributions:

Ml : g ~ 0.5(1 +2- (s — 1)/(n — 1))N(0.5,0.72) + 0.5N(-0.5,0.7%), 2 =

- 1,...,n,
M2: e~ N(0,142z), 1=1,...,n,
M3 : & ~ N(0,|z; — med(z;)]), ¢=1,...,n,

M4 : EiNN(O,SC,'/Q), i=1,...,n.

The error distribution M1 was considered by Mammen (1993) to compare
the ordinary bootstrap and the wild bootstrap variance estimator, and M2 was
considered by Wu (1986). M3 was suggested by Efron(1986) as an alternative
to M2. We have run 500 simulations to estimate the coverage of iterated boot-
strap and percentile method interval with 199 bootstrap resampling. Table 1.
provides the estimated coverage probabilities.

The simulation results reveal that the iterated bootstrap method calibrates
the coverage error of percentile method interval successtully while the calibra-
tion for the model M3 is not so great.

In this simulation, we have used the two point distribution for Z; in (2.1).
Note that the two point distribution does not satisfy the condition (C4), but it
is easy to use in implementation. This is the reason why we have used it instead
of a continuous distribution satisfying the condition (C4). Furthermore, some
limited simulation with a continuous distribution have shown similar results

to those in Table 1.
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Table 1. Estimated Coverage of Bootstrap 90 % Confidence Interval.

361

model n method G757 of—f 07 T 0.9

WB 082 | 083 | 082 | 077 | 073

n =10 TWB 0.86 | 0.90 | 088 | 081 | 0.78

M1 WB 086 | 087 | 084 | 083 | 083

n =20 TWB | 090 | 090 | 090 | 087 | 086

WB 084 | 084 | 081 | 077 | 0.74

n =10 TWB 088 | 088 | 085 | 082 | 0.79

M2 WB 0.87 | 0.87 ] 086 | 086 | 0.85

n =20 TWB 000 | 090 | 090 | 087 | 0.9

WB 073 | 074 | 080 | 076 | 0.72

n =10 TWB 076 | 078 | 0.86 | 0.81 | 0.76

M3 WB 082 | 083 | 085 | 083 | 031

n=20 T%B | 086 | 087 | 090 | 088 | 084

WB 085 | 087 | 084 | 081 | 0.78

n =10 TWB 088 | 0.90 | 0.88 | 085 | 082

M4 WB 089 | 087 | 086 | 084 | 0.6

n=20 —TWB 1090 | 090 | 089 | 088 | 0.90
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