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Quasi-Likelihood Approach for Linear Models with
Censored Data
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Abstract

The parameters in linear models with censored normal responses are usu-
ally estimated by the iterative maximum likelihood and least square methods.
However, the iterative least square method is simple but hardly has theoret-
ical justification, and the iterative maximum likelihood estimating equations
are complicatedly derived. In this paper, we justify these methods via Wedder-
burn (1974)’s quasi-likelihood approach. This provides an explicit justification
for the iterative least square method and also directly the iterative maximum

likelihood method for estimating the regression coefficients.
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1. Introduction

The estimation of linear models with censored normal responses was studied
by several authors; see Wolynetz (1979), Schmee and Hahn (1979) and Aitkin
(1981). Wolynetz (1979) presented an iterative maximum likelihood (ML) method
and Aitkin (1981) obtained the EM equations, which are introduced by Dempste:
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et al. (1977), equivalent to the ML estimating equations. Also, Schmee and Hahn
(1979) described an iterative least squares (ILS) method. However, the ILS method
is simple but hardly has theoretical justification, and the iterative ML estimating
equations are complicatedly derived.

On the other hand, the Wedderburn (1974)’s quasi-likelihood (QL) approach,
which greatly widened the scope of generalized linear models (GLMs) developed by
Nelder and Wedderburn(1972), is widely used in data analysis where in paticular
a likelihood is not available. Hence, the QL approach can be applied to the ILS
method no using the likelihood of the normal linear model with censored data.

In this paper, we justify the above estimating methods via the QL approach. This
provides an explicit justification for the ILS method and also directly the iterative
ML method for estimating the regression coefficients.

The paper is organized as follows. In Section 2, we review the QL and its prop-
erties. In Section 3, the normal linear model with censored data and the estimating
_equations on the model are described. Also, the iterative ML and LS methods are
discussed. Finally, a justfication of these methods via the QL approach is given in

Section 4.

2. Quasi-Likelihood and Properties

Suppose that the ith observation’s response variable Y; (i = 1, -,n) have inde-

pendent with only the first two moments
E(Y:) = i, Var(Y:) = oV (1), (1)

where p; is some known mean function of a set of unknown parameters £, - - - » Bp,
¢ is unknown dispersion parameter, and V(-) is the variance function. In typical
applications p; is determined by known covariates, z;1, - - -, &, say, possibly through

the following model equations

ni:g(ﬂi):xz@ (izl,---,n), , (2)

where 7; is the linear predictor, g(-) is some known GLM link function, z! =
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(Zi1,° -+, Tip) is the 1 xp vector of the covariates for observation i, and 8 = (4, - - -, Bp)?t
is the p x 1 vector of the model parameters.

For any V(u;) Wedderburn (1974) defined a quasi-likelihood (QL), more strictly
a quasi-log-likelihood, g by the relation

n

(i —pi)my; 1 : .
Bq 6ﬂ= : .7:17"')pa 3
/96 ; oVik)  9'(ms) ( ) ®)
where ¢ = 377", ¢; with the ith QL component ¢; and ¢'(u;) = g(u;)/Ou;. Here,
0q/0B; =0 (j =1, --,p) in (3) are called the QL estimating equations. Since the

QL estimating equations are non-linear functions of 3, solving them for maximum

quasi-likelihood (MQL) estimate 3 of 3 usually requires Fisher scoring approach.

In fact, the QL estimating equations have the same estimating equations as
those of GLMs and further the MQL estimator is exactly same as the ML estimator
if there is a distribution of the GLM type having Var(Y;) = ¢V (u;). Also, since
E(0q/08;) =0 (j =1,---,p) as long as E(Y;) = u;, the MQL estimator is consistent
and robust against a misspecification of variance of Y;. Further, McCullagh (1983)
showed that under regular conditions, the MQL estimator ﬁ is consistent and have
asymptotically normal distribution.

Clearly the MQL estimator is not affected by the value of ¢, so that it can be
calculated as if ¢ was known to be 1. However, in order to obtain its standard error

some estimate of ¢ is required. Wedderburn suggested a moment estimate given by

b= —— S (i — AV (i) = X2 (n - p), (4)

n—=Pio

where X? is the Pearson statistic.

3. Estimating Equations on Model

Let T; be the survival time on study for the ith (¢ = 1,2, ,n) individual (patient
or subject) and C; be the random censoring time associated with T;. However 7}’s
may not all be observable due to the censoring mechanism, i.e. the observable

quantities are

Y;l = min(ﬂy CZ)’ 62 = I(Tl S CZ)) w'f = (xily Ti2y" )wip)7
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where I(-) is the indicator function and z! is the 1 x p vector of covariates associated
with the ¢th individual. Assume that T; and C; (i = 1,2, --,n) are independent.

Under the above settings, we consider here the normal regression model
T,=z!B+e (i=1,2,---,n), (5)

where 3 is the p x 1 vector of the unknown model parameters and error terms e;’s
have ii.d. N(0,0%). Note that the response T} in the model (5) may be a suitable
transformation of the survival time on the study, e.g. log(T;).

Based on the observations (y;, d;, z}) for i = 1,2, ,n, the log-likelihood of (8, 02)
in the model (5) is given by
T

1 —
logo? — =5 > (i — wi)* + > log ®((y; — i) /).
2 2074 %
€D eC

¢= E(ﬂ702) X =

Here D[C] are the indext set of individuals for uncensored [censored] observations,
7 is the number of uncensored observations, and & (= 1 — ®) is the distribution
function of N (0, 1).

Then the ML estimating equations for (3, 0?) are given by

08/06; = ~{3 wymi + Y aih(m)} =0 (j=1,---,p) (6)
ieD 1eC ‘
and
02/0o% = ——27175{r — me — Zmzh(mz)} =0, (7
i€D ieC

where m; = (y; — p;)/o and h(-) is the hazard function of N(0,1). The above two
equations give the complicate non-linear functions for (3, 0?). Thus, in order to their
ML estimates the two equations are usually solved via the Newton-Raphson (N-R)
method. That is, this requires the second derivatives of ¢. However, if censoring
is fairly heavy, the N-R method sometimes fail to converge unless initial parameter
estimates are very close to the ML estimates. Also, negative values of o2 can arise
during the iteration procedure; see Lawless (1982, pp. 315).

As an alternative to the N-R method, other iterative methods are suggested by
several authors, see Wolynetz (1979), Schmee and Hahn (1979) and Aitkin (1981).

For this, they considered the pseudo random variables

Y =Yi6+ETT,>Y)1-6) (i=1,---,n). (8)
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Here, since T} has N(u;,0?),
E(TIT: > Y:) = pi + oh(my). (9)

By plugging the equations (8) with (9) in the ML equations (6) and (7), the ML

equations are reduced to

8@/6,31 = ‘&];Z‘Zn:(y:_uZ)zo (_7:1,,]7) (10)
1=1
0b/00% = — 55 {r =3~ (0 — w)*/o” + ) Ama)} =0, (11)

i=1 =1
where A(z) = Oh(x)/0z = h(z)[h(z) — z]. Since the two ML equations give the
simple linear forms for (3, 0?), these equations can be easily solved iteratively for 3
and o2 to give the ML estimates; for more detail, see Lawless (1982, pp. 316).
Note that Wolynetz (1979) presented the ML equations (10) and (11) and Aitkin
(1981) obtained the EM equations equivalent to (10) and (11). This ML methcd
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gives simpler forms than the N-R method but is still complicatedly derived. On the.

other hand, Schmee and Hahn (1979) described an ILS method, with Y;* instead
to the response T; in the model (5). The ILS method provides the same equations
as (10) for B, but different from (11) for o2. In order to estimate o2, Schmee and
Hahn (1979) used the residual mean squares estimate of o2, based on the response
Y. Notice that the ML and ILS methods are essentially the same except for the
estimate of the error variance o2.

Here, we can see that the ILS method provides simpler forms than the ML and
the N-R methods but almost has not theoretical justification. In next section, we

Justify the ILS method and also investigate the ML method, via the QL approach.

4. A Justification via QL Approach

The model (5) can be rewritten as the normal linear models in which T} (i =

1,2,---,n) are independent with

pi = 7,8 and Var(T;) = ¢V (), (12)
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where u; = E(T}), ¢ = 02, and V(u;) = 1. Under the model (12), T;’s may be

subjected to be censored, so only Y;’s are observed, but

E(Y:) # pi.
We here consider the pseudo random variables Y;*’s in (8). Then they give

E(Y;*):/J'i (i:172a""n)7 (13)

where y; = E(T;) = zl3. Note that the expectation identity (13) that provides
validity for estimation in the linear models with censored data was shown by Buckley
and James(1979).

From the ML equations (10) for B and the expectation identity (13), we can see
that the ML equations result from the QL equations with

E(Y)=p;i =z and Var(¥]") = ¢ = o2

based on the pseudo random variable Y;* with (11); also see the QL equations for
(3). So, the MQL estimator of 3 becomes the ML estimator of Wolynetz (1979) and
Aitkin (1981), and also the LS estimator of Schmee and Hahn (1979). Here, it is
difficult to calculate the variance of Y;* due to censoring mechanism. However, by
the consistent and robust properties of the MQL estimator mentioned in Section 3,
there needs no this calculation. That is, since E(04/08;) =0 (j =1,---,p) as long
as E(Y;*) = p; under the model (5) or (13), the corresponding MQL estimator is
consistent and robust against a misspecification of variance of Y;*.

Further, for the estimation of 02, we can use the estimates (4); this gives the same
estimate as the ILS estimate for o2. Now, the parameters 3 and o2 are asymtotically
parameter orthogonality, in sense of Cox and Reid (1987). Thus, the MQL (i.e., ML
and LS) estimates of 8 are not almost affected by an estimate of o2.

After all, the QL approach provides an explicit j:ustiﬁcation for the ILS method
of Schmee and Hahn (1979) and also justifies the ML method for 8 of Wolynetz

(1979) and Aitkin (1981).
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