• 제목/요약/키워드: Statistical regression model

검색결과 1,769건 처리시간 0.024초

Residuals Plots for Repeated Measures Data

  • 박태성
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.187-191
    • /
    • 2000
  • In the analysis of repeated measurements, multivariate regression models that account for the correlations among the observations from the same subject are widely used. Like the usual univariate regression models, these multivariate regression models also need some model diagnostic procedures. In this paper, we propose a simple graphical method to detect outliers and to investigate the goodness of model fit in repeated measures data. The graphical method is based on the quantile-quantile(Q-Q) plots of the $X^2$ distribution and the standard normal distribution. We also propose diagnostic measures to detect influential observations. The proposed method is illustrated using two examples.

  • PDF

Optimal Restrictions on Regression Parameters For Linear Mixture Model

  • Ahn, Jung-Yeon;Park, Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • 제28권3호
    • /
    • pp.325-336
    • /
    • 1999
  • Collinearity among independent variables can have severe effects on the precision of response estimation for some region of interest in the experiments with mixture. A method of finding optimal linear restriction on regression parameter in linear model for mixture experiments in the sense of minimizing integrated mean squared error is studied. We use the formulation of optimal restrictions on regression parameters for estimating responses proposed by Park(1981) by transforming mixture components to mathematically independent variables.

  • PDF

Nonparametric Estimation of Discontinuous Variance Function in Regression Model

  • 강기훈;허집
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.103-108
    • /
    • 2002
  • We consider an estimation of discontinuous variance function in nonparametric heteroscedastic random design regression model. We first propose estimators of a change point and jump size in variance function and then construct an estimator of entire variance function. We examine the rates of convergence of these estimators and give results on their asymptotics. Numerical work reveals that the effectiveness of change point analysis in variance function estimation is quite significant.

  • PDF

Bayesian Analysis in Generalized Log-Gamma Censored Regression Model

  • Younshik chung;Yoomi Kang
    • Communications for Statistical Applications and Methods
    • /
    • 제5권3호
    • /
    • pp.733-742
    • /
    • 1998
  • For industrial and medical lifetime data, the generalized log-gamma regression model is considered. Then the Bayesian analysis for the generalized log-gamma regression with censored data are explained and following the data augmentation (Tanner and Wang; 1987), the censored data is replaced by simulated data. To overcome the complicated Bayesian computation, Makov Chain Monte Carlo (MCMC) method is employed. Then some modified algorithms are proposed to implement MCMC. Finally, one example is presented.

  • PDF

On the Residual Empirical Distribution Function of Stochastic Regression with Correlated Errors

  • Zakeri, Issa-Fakhre;Lee, Sangyeol
    • Communications for Statistical Applications and Methods
    • /
    • 제8권1호
    • /
    • pp.291-297
    • /
    • 2001
  • For a stochastic regression model in which the errors are assumed to form a stationary linear process, we show that the difference between the empirical distribution functions of the errors and the estimates of those errors converges uniformly in probability to zero at the rate of $o_{p}$ ( $n^{-}$$\frac{1}{2}$) as the sample size n increases.

  • PDF

Bayesian Analysis for Random Effects Binomial Regression

  • Kim, Dal-Ho;Kim, Eun-Young
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.817-827
    • /
    • 2000
  • In this paper, we investigate the Bayesian approach to random effect binomial regression models with improper prior due to the absence of information on parameter. We also propose a method of estimating the posterior moments and prediction and discuss some general methods for studying model assessment. The methodology is illustrated with Crowder's Seeds Data. Markov Chain Monte Carlo techniques are used to overcome the computational difficulties.

  • PDF

Consistency and Bounds on the Bias of $S^2$ in the Linear Regression Model with Moving Average Disturbances

  • Song, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • 제24권2호
    • /
    • pp.507-518
    • /
    • 1995
  • The ordinary least squares based estiamte $S^2$ of the disturbance variance is considered in the linear regression model when the disturbances follow the first-order moving-average process. It is shown that $S^2$ is weakly consistent estimate for the disturbance varaince without any restriction on the regressor matrix X. Also, simple exact bounds on the relative bias of $S^2$ are given in finite sample sizes.

  • PDF

Semiparametric Bayesian Regression Model for Multiple Event Time Data

  • Kim, Yongdai
    • Journal of the Korean Statistical Society
    • /
    • 제31권4호
    • /
    • pp.509-518
    • /
    • 2002
  • This paper is concerned with semiparametric Bayesian analysis of the proportional intensity regression model of the Poisson process for multiple event time data. A nonparametric prior distribution is put on the baseline cumulative intensity function and a usual parametric prior distribution is given to the regression parameter. Also we allow heterogeneity among the intensity processes in different subjects by using unobserved random frailty components. Gibbs sampling approach with the Metropolis-Hastings algorithm is used to explore the posterior distributions. Finally, the results are applied to a real data set.

Application of Statistical Models for Default Probability of Loans in Mortgage Companies

  • Jung, Jin-Whan
    • Communications for Statistical Applications and Methods
    • /
    • 제7권2호
    • /
    • pp.605-616
    • /
    • 2000
  • Three primary interests frequently raised by mortgage companies are introduced and the corresponding statistical approaches for the default probability in mortgage companies are examined. Statistical models considered in this paper are time series, logistic regression, decision tree, neural network, and discrete time models. Usage of the models is illustrated using an artificially modified data set and the corresponding models are evaluated in appropriate manners.

  • PDF

Comparative Study on Statistical Packages Analyzing Survival Model - SAS, SPSS, STATA -

  • Cho, Mi-Soon;Kim, Soon-Kwi
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권2호
    • /
    • pp.487-496
    • /
    • 2008
  • Recently survival analysis becomes popular in a variety of fields so that a number of statistical packages are developed for analyzing the survival model. In this paper, several types of survival models are introduced and considered briefly. In addition, widely used three packages(SAS, SPSS, and STATA) for survival data are reviewed and their characteristics are investigated.

  • PDF