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Abstract

For industrial and medical lifetime data, the generalized log-gamma regression
model is considered. Then the Bayesian analysis for the generalized log-gamma
regression with censored data are explained and following the data augmentation
(Tanner and Wang; 1987), the censored data is replaced by simulated data. To
overcome the complicated Bayesian computation, Makov Chain Monte Carlo (MCMC)
method is employed. Then some modified algorithms are proposed to implement
MCMC. Finally, one example is presented.

1. Introduction

In this paper, the generalized log-gamma regression model is considered. The reason for
examming this model is as follows : This model includes the log-exponential, log-gamma, and
lognormal as special cases. As such, it is often suggested as a model for industrial and
medical lifetime data (Farewell and Prentice 1977 ; Lawless 1982) useful for discriminating
among these common distributions, as well as for providing a flexible parametric family of
distributions for modelling the data. Formally, the generalized log-gamma model(Lawless, 1982)
is given by

Yi=TIB+ oe;,i= 1, ,n

where Y; is the log lifetime, 8 = (B, =*-, B,-1) is a p*1 vector and $ €$ has the

generalized log gamma distribution with density function

k——2L 1 e
ip(—;)—exp[k%—keﬁ], 0< k< oo
flelk)= : ) _ (1.1
£ =
‘/‘27[81’(13( D) ), k ©o

With the distribution of ¢ written in the form (1.1), the extreme value(log Weibull) and
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normal(log log normal) distributions are given by the case k=1 and k = oo, respectively.
Since the model depends on the value of % Farewell and Prentice(1977) considered the
maximum likelihood estimator(MLE) of % in life testing in order to study distributional shape
and to discriminate between special cases.

We assume that n—m (m<n) observations are censored since the life time data is
sometimes censored. For frequentist analysis with incomplete data, Dempster, Laird and
Rubin(1977), Ibrahim(1990) investegated the maximum likelihood estimate of parameters using
EM algorithm. Gelfand and Smith(1990), Chib(1992) and Chung(1997) have studied Bayesian
analysis with incompete data. Chib(1992) studied Bayes inference in the Tobit censored
regression model using Gibbs sampler. We study the Bavesian analysis of the generalized
log-gamma regression model asssuming that k£’'s are different fixed values.

The purpose of this paper is to investigate the approaches to solve the computational
difficulty in Bayesian Inference.

The paper is organized as follows: In section 2, the generalized log~gamma distribution and
the Bayesian analysis for generalized log-gamma regression with censored data are explained.
Then the sampling methods are proposed to apply Gibbs Sampler. In section 3, one example
(Schmee and Hahn, 1979) is presented.

2. Bayesian Inference for Censored Regression Model

In this section, we consider the generalized log-gamma regression model with censored data.

2.1 Generalized log gamma distribution

Weibull and lognormal models are commonly used to represent failure times. Specifically, if
failure time is denoted by ¢ and y=logt, then the generalized gamma models give, for

eas R, b, k>0, y = a + bv where the probability density function of v is

I'(E) "lexp(kv—e”) and T denotes the gamma integral. The generalized gamma distributio
n(g.g.d.) is a three-parameter distribution with probability density function of the form

__ Bt iy
() RONPL exp[— ( a) 1, t>0. (2.1)
We will reparameterize the model(2.1); suppose that T has p.d.f.(2.1), and let Y = logT.

Then it easily follows from (2.1) that Y has p.d.f.

f(y)————l——(lk—)[;exp[k(—y—_b—l)—exp (—L;—u)], — 0 y{

Y__

where « = loga and b= B_l. Here, b “ has a log gamma distribution. As k— oo
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Y—

the mean and variance of W= b “  pecome infinite: thus we make a further

transformation and consider the variate. Let W= \/_k(Wl— logk) = % where oszb};
and g = u+ blogk Then the probability density function of W, for (< &< oo, is readily
found to be

k= e
flw) = —Eﬁ@—exp[\/—kw—ke M],—00<w<00. (2.2)

The distribution of W does not change greatly as k gets large. It is easily shown that as

W
2

k—> 00, (2.2) approaches the standard normal probability density function \/%r e (see

Abramowitz and Stegun, 1965, Chapter 6). The log exponential distribution corresponds to the
special case k=1 and o =1 in the parameterization, whereas the (log) two-parameter

gamma distribution, which given by B =1 in the old parameterization, is now given by

oV Ek=1.
2.2. Linear regression model with censored data
Densities are denoted generically by brackets, so joint, conditional, and marginal forms, for

example, appear as [ X, Y], [X|Y] and [X], respectively. We consider the linear regression
model with censored data as follows :

ti= B+ 25;‘1/,7‘1" oe; i=1,",n (2.3)
b=

where g, is distributed to generalized log gamma distribution (2.2).

Since we have little information about (8, ¢ ), it is reasonable assumption that the prior

distribution [ By By -, Bp-1, 62]0671_2 Then the joint posterior density can be written as

[ By .81 By, 0| T]

o< 11618081 81, W By, B yo1, ]

- (ti_BO~ : ﬁ/‘U [j)
« -;’ll—”exl){_\/_gg Zl‘(fi—ﬁo— gﬂjvij) *kglexp @g ]
= g(BO,Bl"",Bp—l,GZ)- (2.4)
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Since the life time data is sometimes censored, we assume that #— m observations are
censored. Without the loss of generality, the right-censored observations are assumed. Then
we will reorder the data so that the first m observations are uncensored and remaining #— m
are right-censored( c¢; denotes a censored event time). The essential idea(following data
augmentation) is quite simple. Suppose that along with the censored observation y; it is
available the corresponding latent data, say z; Define Z; as the (unobserved) variate for the
case of T; such that Z;>c¢; That is, let T= (¥, ", Ym> Zm+1, "> 2») To apply the

Gibbs sampler, we need the full conditional distributions(FCD) as follows:

[ B 1B By-1,0", T] exp{—*\/%nﬂo
25)

Vieg— : B Zig,~— : Bivi
-k [gexp[ ’ \/—I%: 1+ i;ﬂ:ﬂexp[ ’ G%i ]} }

forl<a<p—1,

[ ﬂa |B0,"':Ba-—lxﬂa+1v'“rBD—lrozs T] o exD{_—_\/;—é Z:lviaﬁa (26)
f‘_, Yi-g,— g:ﬁjvij i: Zi-p T Zﬂivﬁ
—k z=lexp[ ‘/—720' ]+ i=m+lexp[ ‘/—.%0' ] ’
[ & 18,81 B,-1,T] < g "*Px
exp {g—gk‘(y,-—ﬁo— gﬁjv PR l,___i;njﬂ'l/‘“zg(zi“ﬁo_ gﬁjvij) n @27
2 yi— By gﬂjvij ﬁ: z;— By— Zﬂjvij
-k | lzlexp( Vo )+ I_=m+lexp( V7o )]
and
(z;1By, 2 B - ’02)
[2:180, B1, B y-1, o, Y1 =25 "‘i"_ c('i,-'S L2,z (28)

where g is the density funstion of Z; and G(c¢;) denotes the low tail probability upto

¢; under the density g.
To simulate random variables from FCD, the methods used in the computations are
described as follows:

The following lemma is useful to sample A, from [,BOIBI,---,Bp_l,o‘Z, T] in (25).
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Lemma 2.1. Suppose that 7 is generated from gamma distribution with %&# and 1. That is,
In=lo=7  Let

ilﬁjvij) fﬁjv i) |

(yi— (Z,'—
_ = =)
a=k gl expl \/j ko I+ i=$+lexp[ \/] ko

y is distributed to f(y) = I’(}en) Y

Then By = YV kolog (—%) is distributed to [ Byl81, =, Bs-1, &, T1.

Proof. Let 7y = aexp[—

|J1=a exp[— \/’B_Igd] —\7——%; . So, the probability density function of By is

By , _ a .
\/_ko‘]' Then By, = V kolog ( 7) and Jacobian is

f(By) = —[ﬁgya“"’[exp(—%)]’"’—‘exp[—aexp(— \/ékoa)llfl

"\é_k By)expl — aexp(— \/élga )]

o< [ |51,”',Bp—1,0'2, TI.
Thus, the random variate A, is distributed to [ 8!8y, ", By~ 0%, T1.

x exp(—

When the random variates are gener'ated from [Balﬁ(_a),o2, T] fora=1,,p—1 in

(26) where B (s = (Bo, . Ba=1. Bat1, *»Bs-1). Metropolis algorithm (Metropolis et al.
1953) is employed. However the Metropolis algorithm can not be applied to

[o‘zlb’o,---,b’p_l,T] in (27) since the support set of ¢ is positive real line. So the

following algorithm is used for sampling from [¢ | &y, --',B,)_l , T in (2.7).

Modified Algorithm 2.1. Since ¢ is a variable with range in positive real line, we can
use a transformation, such as 02' = logoz, to map(0, o) into ( —oo , ), then use the
transition kernel and applying of the Metropolis algorithm to the density of o ’. After one
transition of the Metropolis algorithm is done, then we transform & I back to the original

scale means of ¢ = exp & '.

The following modified algorithm 2.2 is useful to sample from
[z By, "',Bp—lyoz, T]for 1<i<wn—m in (28).
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Modified Algorithm 2.2. Assume that £ 1.

1. Generate Y, from exponential distribution and set X, =Y, + c,

_ | GTAT 2‘5’ Vi

For notational conveneince, let ¢; = expl 77

2. Generate U from uniform distribution on [0,1].

P —{k—Dx;
I U<g(x,) = *’;Tk:l—)—— then accept x,.

Otherwise, go to wuntil accept x; .

3. Set &, = \/_kIOgX,'.

Then z; = By + S‘:,ij,»,- + o€; is a sample from [z;|8,¢%, Y.
f=

The implementation of Gibbs sampler is briefully described in the following.

Step 1. Starting with the initial guesses at BI(O) ) e ,(,(B 0%® and zi,?lrl, , 20

Step 2. The usual Gibbs iteration is as follows:

Bo ~ [ Bo |B1(0),'“ ;(,Q ,oX0 2 f,(,)) .29 in (25) using lemma 21. For1 < ¢ < p—1,
o~ (BB, BB, 80,6, 20, ,,2”] in (26) using Metroplis

algorithm.

&~ [ABY, B, -+, 80,29, 227 in (27) using Modified algorithm 2.1. And

=1, %
z; ~ [2:1 82, 8P, - B“) 2D g e 2020l 291 in (28) using Modified

algorithm 2.2.

The above two steps form an iteration which updates ,80(0),--- ,(,Q ,02(0),2(0) to

BO(” ;1_)1,02(1),2(1). Thus ¢ such iterations produce a "one-string run”. Also, #» parallel

strings are run with different starting positions to make sure that the samples converge to
the whole posterior distribution, instead of a local maximum of the posterior distribution.
Each cnvergence of Gibbs sampler and Metropolis algorithm is checked using Gelman and

Rubin’s (1992) method.
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3. Illustrative Example

Schmee and Hahn(1979) used the results of temperature accelerated life tests on electrical
insulation in 40 motorettes in order to illustrate the iterative least square method. Ten

motorettes were tested at each of the four temperatures: 150°,170°,190°, and 220° in
degrees °c. The time to failure in hours is given in Table 3.1. A star indicated that a
motorette was taken off the study without failing at the event time indicated. For these data,

assume that
t;= fyt+ Bitoe; for 1=1,-,40 where e, distributed to generalized log gamma

1000
temperature + 273.2

23-right censored data. Reorder the data so that the first 17 observations are uncensored (i.e.

distribution, v; = and ;= log 1y(fth failure time). Then there are

a failure is observered at f;) and the remaining 23 observations are censored ( ¢; denotes a

censored event time).

Table 3.1. Motorette Data (source : Schmee and Hahn(1979))

. 8064+ 8064  8064* 8064 8064+
150
8064 8064 8064+ 8064 x* 8064*
0 1764 2773 3442 3542 3780
170
4860 5196 5448+ 5448 5448%*
408 408 1344 1344 1440
190°
1680 1680+ 1680 1680 1680
408 408 504 504 504
220°
528* H28* 528x* 528* 528

Table 3.2 Posterior means and standard derivation

k=1.1 k=15 k=1.8 k=2.0 k=7.0 k=8.0

ERB, 2.89 2.25 3.31 4.81 0.71 -0.044
(S.D.) (2.49) (2.57) (253) (2.87) (1.03) (1.02)
EB, 0.53 0.76 0.32 -0.21 1.68 1.77
(S.D.) (0.99) (0.86) (1.06) (1.29) (0.46) (0.45)
Ed 0.42 0.42 0.59 1.38 0.35 0.043
(S.D.) (0.27) 0.27) (0.49) (0.61) (0.01) (0.02)
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Table 3.2 shows the posterior mean and posterior standard deviation cf f;, 8; and o for

different values of & In Table 3.2, their estimators are separated into two groups such as
small values( 2 = 1.1, 15, 18 20) and large values( 2= 7.0, 80). And the variance of
estimators shows a tendency to be small as £ increase. In particular, their estimates are very
slightly different when £A=7.0 and 8.0. Actually the generalized log-gamma distribution does

not change greatly as k& gets large.

Next, we want to estimate the posterior marginal density, say [ 8,!7]. But since the full

conditional densities are not in closed form we can not use the Rao-Blackwellized estimation
proposed by Gelfand and Smith(1990) as follows;

(871 = L 318,16, -, 821,801, -, 8321,07, T) 3.1)

where 1<a<p—1 and {B?, ¥} 1 ;=1 are Gibbs output. In this time, without using

kernel density estimation, we estimate the posterior marginal density [8,]7T] using the

Monte Carlo method proposed by Chen(1994) as follows; for fixed B,

[BZ|T] ~ %nglq(ﬂ,f”lﬁo“’- Ba[)l, alz-l» ',31(2121,02“))

() (2) (D 2(4)
g(B;;BOI"“ a I’Bal"'lvyu"ﬁpl—'lvo‘ I)
g(BO([)v“.9 ((11—)—lyBai), alllv > .181()11110'2(1‘))

(3.2

X

where g(By,,Ba - Byp-1,02 and q(B.1By, s Ba-1sBatt, = » Bp-1,0°) and are the

joint posterior density in (24) and the conditional density of B, given
ﬁo:'“1Ba—lrﬁa+l)“.,ﬁl)—lv62 Obtalned from q(BO:'“)Bar.“’BP“I’0-2)’ reSpeCtively and

{ ,8(') 2(0} ;=1 are Gibbs output. Choosing a good function ¢ can be quite difficult. In our

case, a reasonable choice of ¢ is to use a normal density whose mean and variance are based

2(0} i=1. The grid points

on the sample mean and sample covariance of Gibbs output { B(i)
B.'s need not be uniformly spaced. Then using the formula in (3.2), the estimated posterior
marginal densities are in Figure 3.1 and 3.2. According to the properties of generalized
log-gamma distribution, the distributional shape strongly depends on the value of % in Figure

3.1 and 3.2.
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Figure 3.1 Marginal posterior density of £,
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