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Residuals Plots for Repeated Measures Data !

TAESUNG PARK 2

SUMMARY

In the analysis of repeated measurements, multivariate regression models that account
for the correlations among the observations from the same subject are widely used. Like
the usual univariate regression models, these multivariate regression models also need some
model diagnostic procedures. In this paper, we propose a simple graphical method to
detect outliers and to investigate the goodness of model fit in repeated measures data. The
graphical method is based on the quantile-quantile(Q-Q) plots of the x? distribution and
the standard normal distribution. We also propose diagnostic measures to detect influential
observations. The proposed method is illustrated using two examples.
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1 Introduction

Like univariate regression models, the multivariate regression models for repeated measures
data also need some model diagnostic procedures for checking model adequacy, and for
detecting outliers and influential observations. Though the multivariate regression models
have been widely used to analyze repeated measures data, not many studies have been
performed for model diagnostics. Recently, the idea of using residuals in repeated measures
data has been introduced. Weiss and Lazaro (1992) proposed parallel plots of residuals to
check model fits and to identify outlying observations. However, their plots are not easily
applicable to cases where the sample size is large or the number of repeated observations
is large. Dawson, et. al. (1997) also proposed two graphical techniques useful in detecting
correlation structure in repeated measures data. '

The main objective of this paper is to propose a simple graphical method and diagnostic
measures to detect outliers in repeated measures data. We focus on repeated measures
data where responses are normally distributed. The graphical method uses the quantile-

quantile(Q-Q) plot of the x? distribution and the standard normal distribution. The Q-Q
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plots can handle repeated measures data where the sample size is large and the number of
repeated observations is also large.

This paper is organized as follows. In Section 2, the models of repeated measures data
are described. In Section 3, residuals are defined. Three plots are proposed which are useful
in detecting outlying observations. They include the Q-Q plots based on the x? distribution

and the standard normal distribution, and the normalized residual plot.

2 Models

Consider repeated measures obtained from n subjects at ¢ different time points. Let y; =
(¥i1,- - -, ¥it;)T denote the ¢; x 1 vector of responses and z; = (:1:;";, .. .,:zz;i)T the t; x p
matrix of covariates, where z;; is 1 x p covariate vector for j =1,...,t; (< t).

The y; are assumed to follow the model
yi=xf +e, : 1)

where A is a p x 1 vector of unknown regression parameters, and €; = (e;1,...,ei, )7 is the
error vector. The error vectors are assumed to be independent and normally distributed
with the mean vector 0 and the common covariance matrix 3.

Commonly used structures for £ are simple, first-order autoregressive (AR-1), and com-
pound symmetry(CS). A simple structure uses the identity matrix that assumes indepen-
dence among observations. AR-1 assumes that first-order autoregressive correlation exists
among the repeated measurements. CS assumes that the correlation is the same among
the repeated measurements. This model can also handle the unstructured covariance that
treats all elements as parameters. As special cases, mixed models with random effects can
also be expressed by (1) with appropriate covariance structures (Jennrich and Schluchter,
1986). Model parameters can be obtained using the MIXED procedure of the SAS statistical
package via maximum likelihood or restricted maximum likelihood estimation.

Note that (1) can be represented using the following concatenation response vector Y

and the design matrix X:

Y=XB+E, (2)
where
U T e
Y = : , X= : ,and E =
Y, Tn €n
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Let the MLE of 8 be 8 and the MLE of ¥; be ¥; which are usually obtained by an
iterative algorithm (Laird, Lange, and Stram, 1987). Then

-1
5 = .1 = o1
8= <Z 'S, x; mezi Y |-
i=1 i=1
Alternatively, using (2) B can be written as

p=(x797x) " (x797y),

3 n

where V = diag(2y, -+, 3y,) is a t* x t* block diagonal matrix with t* = Yoy ti

3 Residual Plots and Diagnostic Measures

For the ith subject, the residual vector is defined as the observed vector subtracted by the

predicted vector. That is, r; is given by

ri= Y=Y ()
= y;—z.p.
Let R be a concatenation vector of r;s. Then,
T1 Yy — :131,3
R=| : |= : =Y - X5.
Tn yn - wnﬁ
Weiss and Lazaro (1992) introduced two types of residuals with and without adjusting
random effects. We do not distinguish these two residuals in (3), since random effects model
can be easily incorporated in Model (1).
When the model fits the data well, the residual vectors are normally distributed with
the mean zero vector. The next theorem summarizes the distribution of residual vectors.

THEOREM 1. When the model fits the data well, R is normally distributed with the

zero mean vector and the following covariance matric W :
W“ - “Var(R) 13 — “HVHT,

where V. = diag(Zy,---,3,) is a t* x t* block diagonal matric and H = I —
X(XTv-i1x)-1xTv-!,
The proof of Theorem is given in Appendix. Let W, be the variance matrix of r; which is

a t x t block diagonal submatrix of W. From Theorem 1, we then have the following result.
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THEOREM 2. When the model fits the data well, g; = T?Wi_lri, 1 =1---,n, are
distributed with the x2-distribution with t; degrees of freedom.
The proof of Theorem is given in Appendix.

When we have balanced and complete observations, say the number of responses from
the same subject is equal to ¢ for all ¢, we can construct a Q-Q plot easily with observed g;s
using the y2-distribution. Let g(1) < -+ < q(n) be ordered values of ¢;s. Then, gq(;) is in fact
the empirical 100 x i/n percentile. From the y?-distribution with ¢ degrees of freedom, we
can obtain the corresponding quantiles ;) < -+ < 9(,). Then the Q-Q plot is the graph
of (q(;),%(;)) from which we can investigate model fits and identify outliers.

When we have unbalanced or incomplete observations, the number of responses from the
same sub ject t; may differ from subject to subject. Then, the degrees of freedom of ¢; also
differ and it is not plausible to construct a Q-Q plot based on the y%—distribution. In that
case, we suggest using the Q-Q plot based on the standard normal distribution.

THEOREM 3. When the model fits the data well, ¢~ = (¢; — t;)/v/2t;, i=1,---,n, are
distributed with the standard normal distribution.

The ¢V is a summary measure for the residual vector from the i subject. We call ¢
the normalized residual for the ith subject. We can construct a Q-Q plot similarly with
observed ¢!¥s using the standard normal distribution. This plot can be easily obtained from

the standard softwares.
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