Journal of the Korean Statistical Society (1999), 28: 3, pp 325-336

Optimal Restrictions on Regression Parameters
For Linear Mixture Model!

Jung Yeon Ahn'and Sung Hyun Park!

ABSTRACT

Collinearity among independent variables can have severe effects on the
precision of response estimation for some region of interest in the exper-
iments with mixture. A method of finding optimal linear restriction on
regression parameter in linear model for mixture experiments in the sense of
minimizing integrated mean squared error is studied. We use the formula-
tion of optimal restrictions on regression paratneters for estimating responses
proposed by Park(1981) by transforming mixture components to mathemat-
ically independent variables.

Keywords: Collinearity; Restriction matrix; Mixture experiment; Integrated mean
squared error.

1. INTRODUCTION

Mixture problem is a special type of experimental design problem in which the
response Y (or responses) depends only on the relative proportions of the design
factors(or components) and not on the absolute amounts of these components.
If z; is the proportion of the j-th component, then a mixture problem with ¢
components is characterized by the constraints

$1+$2++1'q:1, 333207 j=1,2,,q (11)

The functional relationship is assumed to be approximated by the linear mixture
model,

y(x) =x'B+e (1.2)

where X' = (z1,%2, --,%,) i a g-vector of input mixture variables, and g =

(B, P2, By) is a g-vector of unknown regression parameters. The error, ¢
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is assumed to have mean zero and unknown variance, ¢2. Note that possible
mixtures are restricted to the regular (¢ — 1) dimensional simplex.
For all n observations the model (1.2) may be conveniently expressed as

y=Xp+e (1.3)

where y is the n-vector of observed responses, X is the n x ¢ design matrix, and
€ 1s the n-vector of errors which are identically independently distributed. The
least squares estimator of 3 is

B=(X'X)"'X"y. (1.4)
Suppose r linear restrictions are imposed on the parameter space, such that,
cpg=0 (1.5)

in which C' is an 7 x ¢ matrix of rank 7(< ¢). Let 3 be the least squares estimator
of § in (1.3) under the restrictions (1.5). It is well known (see Searle(1971)) that
3 has the form of

=5 (X'X)lccx'x)" e es. (1.6)

The objective of this paper is to propose the optimal linear restriction on
regression parameters in mixture model. Park(1981) proposed how to find the
optimal restrictions on regression parameters when the response estimator is the
major concern. However, because of the inherent constraints described in (1.1),
the method cannot be applied directly. So we consider a transformation to use
his optimal restrictions on mixture experiments.

2. TRANSFORMING OF MIXTURE COMPONENTS

The factor space of the ¢ mixture component proportions is represented by a
(g — 1)-dimensional regular simplex defined according to (1.1). Instead of work-
ing directly with the g linearly dependent mixture components z1,z,- - -, z4, let
us redefine the system in terms of (¢ — 1) mathematically independent variables
21,22, "+, 2¢—1- To do so we suggest the following transformation that was origi-
nally due to Claringbold(1955).

V= (¢X - J)O
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where J is n x ¢ matrix that has all elements 1, and © is g x ¢ matrix defined by

g—1 0 0 - 0 s
-1 (g—2) 0 0 s
-1 -1 (g—3)m 0 s
@ = -1 -1 —m 0 S
~1 —1 -m -t 8
~1 -, -m - =t s
and the elements [,m, - ,t and s in © are defined in a manner to force the sum

of squares of the elements in each column inside the brackets to be g(¢—1). Then
we define Z as

Z=VQ (2.1)

where () is ¢ X ¢ matrix defined by

1 1 1 1
= dia, { ) ) ,"',—,0}
? ®lala—1) qlg— 20’ g(g - 3)m gt

to make the ranges of the transformed variables uniform. This transformation

change the design matrix X into Z where
Z:(Z17z2""7zq)7 Zj:(zlj’zflj)"':znj),

_1§Zz]§1,zzq=0 i=]—,2,"',n,j:1,2,“',q.

Let Z4 be the matrix Z in (2.1) with the gth column removed and augmented
on the left side with an n X 1 column of 1’s. At the points of the design in the
Z1,23," - - ,Zq—1 System, observed values of the response are collected and are used
for the estimation of the parameters in the vector - in the model

y=247+c¢ (2.2)
and observed response, y, that is determined by

y(z) =2y +e
where z' is a row of the matrix Z4 in (2.2). The vector of parameter estimate is

7= (24'24) 24"y
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and the fitted model at z is

The variance of §(z) is given by
var[§(z)] = 2/ (Z4'Z4) " ‘2c?.
Suppose a set of linear restrictions are imposed on the parameter space, i.e.,
Ly=0 (2.3)

in which L is an r x ¢ matrix of rank r(< g). Let 7 be the least squares estimator
of v under the restriction (2.3). It is well known that (see Searle(1971)) that ¥
has the form of

VL) = {I—(ZA'Za) L [L(Z4'Z4) L' YA

vy =
= B¥ (2.4)
where
B=1—(24Z4)7 'L'[L(Z4'24)7 L") L. (2.5)
And the fitted value is
§(z) = 2'7. (2.6)

It is easy to show that
var(3) = 0*(Za' Z4) " — 0H(ZA' Z4) L [L(Z4' Z4) LT (24 Z4)
and

MSE[j(z)] = E(z'y —2'7)?
= %2 B(Z4'Z4) ' B'z + 2/ GLyy1L'G's

where B is given in (2.5) and G is given by

G=(ZA'Z4) 'L'[L(Z4'Z4)7 L] .

3. FORMULATION OF OPTIMAL RESTRICTIONS

To contrast the precision of §(z) with that of §(z), we examine the difference,

D(z) = var[j(z)] — MSE[§(z)]
= {var[y(z)] — var[§(z)]} — {squared bias of §(z)}
= o2 ((Za'Za) 'L [L(Z4'Z4) 1) L(Z4' Z4) " Y2 — 2/ GLyyIL G
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We wish to find an r x ¢ restriction matrix L, and the corresponding biased
estimator in (2.4) that maximizes the difference between integrated MSE’s of
9(z) and §{z) over the region R under a weighting function W (z), that is, we
wish to maximizes

J

| {arlg(a)] ~ MSE(2)y}dW (2)

- / D(z)dW (z) (3.1)
R

subject to linear restrictions (2.3).

To determine the restriction matrix L, we first note that the constraint
L(Z'WZa) 'L = I, may be imposed without loss of generality. Observe that,
since L(Z'Z4)"'L' = HH' for an r x r nonsingular matrix H and %(L) =
F(H7LL) in (2.4), it follows that for every L there exists a corresponding L1 such
that (L) = (L) and L1(Z4Z4)" L} = I,. If we let M = [, zz'dW (z), then

J=1IV —IB
where
v = [ {varig(a)) - varli(z)]} aW ()
= o*r[(Z24Z4) 'L L(2yZ4)" M]
B — /R [squared bias of §(z)] dW (z)
L' L(ZZA) "M (24 Z4) " L' L.

Ii

Thus, J is the difference between the integrated difference of var(j(z)] — var[§(z)]
and the integrated squared bias of 7(z). Therefore, in essence, we are looking for
a restriction matrix L from which the gain in precision of §(z) over j(z) in terms
of variance is not offset by the squared bias over the region R.

We can now respecify the class of estimators of interest as ¥ = (I — (24 Z4)7}
L'L)4 for all L such that L(Z%Z4)"'L' = I, and Ly = 0. A problem is raised
in evaluation of J, for J is a function of the unknown vector . Suppose v = de,
where « are the direction cosines of v and ¢ is the length of vector v, § = (v )2,
Since « is completely unknown, one might wish to average J in (3.1) over all
directions in such a way that the distribution over all directions is uniform. Note
that IB is the only term in J that involves v, so consider the average of I.B over

all possible directions. Since I'B is a scalar, we can write
IB = tr]yL'L(Z424) *M(Z'4Z4) L' L]
= 6%r[L'L(Z424) *M(Z4Z4) " L' Lad/
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In Park(1981), the average of aa’ over all possible directions in such a way that
the distribution over all directions is uniform is I,/g. Thus, the average of IB is
2

%tr[L'L(z;zA)—lM(z;zA)—lL'L]

and the objective function J for this case may be written as

52
Jo=0%tr[(Z424) ' L' L(Z),Z4)" M) — ?tr[L'L(quZA)—lM(z;le)—lL'L].
(3.2)
Now it is of interest to examine the criterion in (3.2) for some particular

moment matrix M. Define

A2
AY? = ( (1) R and T = (T, | T»)
2

where A}/z = diag(/\}/z, e ,A;/_zr), A;/z = diag()\;/_ETH, e ,/\,;1,/2), Ty is g x (q —
7), Tp is ¢ x r for some r < ¢, \; are eigen values of Z, Z4, Ay > --- > Ay > 0 and
T is the corresponding orthogonal matrix of the eigen vectors. The rows of AY2T
form a basis for g-Euclidian space and from the condition of L(Z/,Z4) L' = I,
we can write

L = (DD Y2pAY/ 2 (3.3)

where D is any g X r matrix of rank r.

Suppose now
AV
M= 2424
n

Then we can show that

nd, = o*tr[(Z4Z4)" L'L) — (8%/q)tr[L'L)
= o%r ~ (8%/q)tr[AV2SpAL?)

g9
= o'r—(6°/9) ) suls
=1
where Sp = D'(DD')"'D = (s;;). Since Sp is symmetric and idempotent, 0 <
s;; < 1and 37 ; si; = r. Therefore, it is easy to see that nJ, is maximized by
choosing s;; =1ifi=¢g—r+1,-.-,q and s;; = 0, otherwise. Consequently,

q
max[nJ,] = or — (6%/q) E Ai- (3.4)
i=g—r+1
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Observe that the maximum is attainable if we take

D=[0]|1I] and S_Dz(g _?)

Substituting this D into (3.3), we get the optimal restriction matrix,
L* = AT, (3.5)
Note that the restricted estimator 4 with L* has the following form,
Vo= = (Z424)7 L")
= [[-Dny

which means that 4* is nothing but the principal component regression estimator
of ~.
Suppose now that
M=w / zz'dz,
R

where 1/w = [pdz and R={z: -1 < z; <1 for all i}. Then, M = cI, where c

is a constant, and
Jofe=c*tr[(Z4Z4) 'L L(Z4Z4) 7Y — (6% q)tr[L'L(Z), Z4)"2L'L].  (3.6)
Substituting I = (DD")Y2DAY?T’ into (3.6),

Jafe = otr[ATV2SpATY2) — (82 /q)tr[AY2Sp AT SpAY?

q . q q
= S st - (62/g) [Zs?ﬁZs?]—(Av\fl) :
i=1

i=1 i#]
Since, in the event of severe collinearity, the values of Ay, A\j—~1, Ag—2, - -, etc. are
close to zero, it can be seen that s;; = 0 for ¢ = 1,2,---,9g — 7, sz = 1 for

i=qg-—r+1,--+,q, and s;; = 0 for 7 # j in order to maximize (3.2). This leads
to the same optimal matrix L* in (3.5), and

q
max[J,/c] =c® > A7t —ré%/q. (3.7)
i=q—r+1
Note that the criteria (3.4) and (3.7) lead to the same optimal number of r.
For (3.4), we should drop the ith principal component if and only if

52
o? — ?\i > 0. (3.8)
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For (3.7), we should drop the ith principal component if and only if

o? 42
— - —>0. 3.9
N g (3.9)
which is the same inequality as (3.8).
We may use the followings as the estimates of o2 and 42 practically;

02 =y'(I - Za(Z4Za) " Z)y/(n - q) (3.10)
§2 =45 g2-L (3.11)
Am

where Aas is the median of A, Xg, -+, ;. Note that (3.10) is equal to y'(I —
X(X'X)"1X")y/(n - q) and that the usual unbiased estimator of §” is

g

g =9%-23 AL (3.12)
i=1
But the values of Ay, \g—1, Ag—2, - -+, etc. are close to zero, (3.12) varies extremely

and even have a negative value. So we recommend (3.11) which is robust to the
values of \;, ¢ = 1,2, -+, q as the estimator of J.

We have to transform this optimal restriction, L*y = 0, properly, to use for
3, the regression parameter in the mixture model (1.3). The optimal restriction
would be

C*B=0 (3.13)
where C* = L*P~! and

1 1 0 0 0

1 —(¢g—1Dt 1 0 0

1 —(g—-1)7 —(¢—2)7! 1 0

Pp=|1 —(g-1)7" —(¢g-2)7" —(¢g=-3)* 0
—(g-1)7t —(g-27F —(¢g—-3)" 1

@-D7 —(g-2)7" —(g-3)7" -1

4. AN EXAMPLE

We can evaluate the optimal restriction (3.13) by an example. The data for
this example(Table 4.1) are the octane-blending data which appeared in Cor-
nell(1990).
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The original model is

98.7
97.8

88.1

0
0

0

023 0
0.1 0

0 0

y=XB+e

0 0 074 003
0 012 074 0.04
055 0 037 0.08

The ordinary estimate of 8 in (1.4) is

B
Be

B

€12

333

B=( 343202 859228 141.252 77.1801 87.7502 100.301 116.921 )"

Table 4.1: Gasoline motor octane ratings

Gasoline Components

Motor Octane

I T2 T3 T4 5 Tg 7 Y
0 0.23 0 0 0 0.74 0.03 98.7
0 0.10 0 0 0.12 0.74 0.04 97.8
0 0 0 0.10 0.12 0.74 0.04 96.6
0 0.49 0 0 0.12 0.37 0.02 92.0
0 0 0 0.62 0.12 0.18 0.08 86.6
0 0.62 0 0 0 0.37 0.01 91.2
0.17 0.27 0.10 0.38 0 0 0.08 81.9
0.17 0.19 0.10 0.38 0.02 0.06 0.08 83.1
0.17 0.21 0.10 0.38 0 0.06 0.08 82.4
0.17 0.15 0.10 0.38 0.02 0.10 0.08 83.2
0.21 0.36 0.12 0.25 0 0 0.06 81.4
0 0 0 0.55 0 0.37 0.08 88.1

To transform X into Z4, we should evaluate © and @,

0
5.92
-1.18
—1.18
—1.18
~1.18
—1.18

0
0
5.80
—1.45
—1.45
—1.45
—1.45

0
0
0
5.61
—1.87
—1.87
—1.87

0
0
0
0
5.29
—2.65
—2.65

0
0
0
0
0
4.58
—4.58

2.45
2.45
2.45
2.45
2.45
2.45
2.45
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0.024 0 0 0 0 0 0

0 0.024 0 0 0 0 0

0 0 0.025 0 0 0 0

Q= 0 0 0 0.025 0 0 0

0 0 0 0 0.027 0 0

0 0 0 0 0 0.031 0

0 0 0 0 0 0 0

Then the model (2.2) in terms of z after transforming 2z is
Yy =Zay+te

98.7 1 -0.17 0.08 -0.19 -—-026 -0.39 0.71 Y1 €1
97.8 1 -0.17 -0.08 -0.23 -03 -0.27 0.7 Y2 €2
: = : A et
88.1 1 -0.16 =02 -025 04 —-0.23 0.29 Y7 €12

The estimates of the model parameters, o2 in (3.10) and 42 in (3.11) are

4={(1.949 —57.628 —15.631 36.569 —18.358 —13.907 ~8.310 )

o2 = 0.699213
5% =13905.3 .

The A1, -+, A7, the eigenvalues of Z'y Z4 are 13.577, 2.07096, 0.796331, 0.0946489,
0.0428621, 0.000293162, 4.61967 x 10~6. And T, the corresponding matrix of eigen
vectors is

—0.947 0.082 -0.068 0.121 ~-0.093 0.140 —0.260
0.179 0.172 0.028 0.131 0663 0.219 —0.658
0.074 0.094 0876 0.252 —0.340 0.081 —0.184
T = 0.192 0.682 -0.372 0.456 —0.363 -—0.104 -0.094
—0.179 0.136 0.203 0.166 0.375 —0.852 0.122

—0.114 0.363 0.168 0.198 0.403 0433 0.662

—0.046 0.582 0.143 -0.794 -0.042 -0.046 -0.070

By the criteron (3.8) or (3.9), we take r = 2. Then the optimal restriction matrix
with respect to v is

I* = —0.00195 0.00622 0.00288 0.00339  0.00690 0.00741  0.0113
~ | —0.000098 0.00125 0.00031 —0.00171 —0.00009 —0.0001 —0.00015
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by (3.5). And the optimal restriction matrix with respect to g is

c* = 0.00505  0.00123 0.001079 0.00285 0.000892 -—0.00086 —0.01219
~\ 0.001059 0.000063 —0.001609 0.00003 0.000054 0.000078  0.00023
by (3.13). The restricted estimate of 3 in (1.6) is

B =( 81.6554 85.6568 76.1712 82.8537 89.2936 102.363 67.9046 ).

Table 4.2 shows the different J, as r varies where M is clj.

Table 4.2:

T 1 2 3 4
Jo 14942314 149709.92 147750.69 145771.90

5. CONCLUSION

This paper discussed the problem of finding optimal restriction on regression
parameters for mixture model where the collinearity exists in components. We
can apply the optimal restriction proposed by Park(1981) in a general regression
model after we transform g-component in (g — 1)-dimensional simplex to (¢ — 1)
mathematically independent variables. The method of transformation may have
many choices besides the method we used in this paper. The properties of this
optimal restriction can be evaluated by some criteria such as screening strategy
in Park(1978).
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