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ABSTRACT

We consider an estimation of discontinuous variance function in nonparametric het-
eroscedastic random design regression model. We first propose estimators of a change point
and jump size in variance function and then construct an estimator of entire variance func-
tion. We examine the rates of convergence of these estimators and give results on their
asymptotics. Numerical work reveals that the effectiveness of change point analysis in vari-
ance function estimation is quite significant.

KEY WORDS. Discontinuity point; Jump size; Nonparametric regression; One-sided ker-
nel; Rate of convergence.

1. Introduction

In most nonparametric regression function estimation, the variance of errors is assumed to
be homogeneous or heterogeneous with smooth function. It is of great meaningful to consider
estimation of these variance functions since it is important in its own right and in various
applications. The estimation of variance function is needed in some bandwidth selection
procedures, weighted least squares estimation, the construction of confidence and prediction
intervals for mean function and quality control, etc. These applications are discussed in
Carroll (1982), Carroll and Ruppert (1988) and Miiller (1988).

In this paper we consider an approach for estimating variance function in the following
random design regression model:

Y; = m(Xl) + 91/2(Xi)5i7 i=1,...,n, (1)

where m(z) = E(Y]X = z) is the mean regression function, v(z) is the conditional variance
of Y given X = z and conditional on X,...,Xn, €;'s are independent random variables
with mean 0 and variance 1. Let f be the design density of X. Difference from former
works is we do not assume that the variance function is continuous. That is, it is assumed
that a change point exists for the variance function v at some point 7 in the interior of the
support of f. In fact, relatively little attention is paid in this problem compared with its
importance.

Our approach on this problem is similar to one for estimating discontinuous regression
function, which was discussed in Miiller (1992) and Loader (1996), etc. One-sided kernel

1 Department of Statistics, Hankuk University of Foreign Studies, Yongin 449-791, Korea.
?Department of Statistics, Duksung Women’s University, Seoul 132-714, Korea.

- 103 -



Discontinuous Variance Function Estimation

regression estimates based on squared residuals are used to estimate the location of a change
point and jump size. It is shown that the resulting estimator of the change point is consistent
with n~! convergence rate and jump size estimator has asmyptotic normality. For estimating
variance function itself, we use Nadaraya-Watson type estimator with the data set splitted
by the estimated location of the change point. We show that the rate of convergence of the
integrated squared error of the estimated variance function does not depend on the rate of
the estimated location of the change point.

2. Estimators and theoretical properties
We begin by stating a set of assumptions on unknown functions in the model (1):
(A.1) There exists a constant C such that
jv(z) — v(y)| £ Clz — y| whenever (z - 7)(y—7) >0, (2)
i.e. v satisfies the Lipschitz condition of order 1 over [0,7) and (7,1]. The jump size at
the change point 7 in v is given by A = vy (7) — v_(7), where vy (r) = limz_,r4 v(z),

v—(1) = lim;,,— v(z). Without loss of generality we may assume 0 < A < oo, since the
case of -00 < A < 0 can be treated in the same way.

(A.2) The design density f is supported on {0,1] with inf,¢[o,1) f(#) > 0, and satisfies the
Lipschitz condition of order 1.

(A.3) The regression function m satisfies the Lipschitz condition of order 1.

We apply Nadaraya-Watson smoother with a one-sided kernel function on squared resid-
uals to detect the location of a change point and the jump size in variance function. To get

)

as the estimator of m, where L is a nonnegative kernel function with support {—1,1] and

residuals, we first define

. 1 o, (Xj—=x 1 <, (Xj—=z
m($)=m2"(—hl )Y/WZ:L( e

=1

h1 = h;, is a sequence of bandwidths satisfying:
(A.4) The function L is symmetric and satisfies the Lipschitz condition of order 1.
(A.5) hy — 0, and nhy/logn — oo, as n — oo.

Using the squared residuals R; = (V; — M(X;))2, i =1,---,n, we define

)= e Sk (B2 m [ -3k (K22) ®

=1 i=1

ﬁ—(m)zn—i;iK(x;Lin)Rf/n—:bg;K(w;in)‘ @)

i=1

Here, K is a kernel function with support [0,1] and A = hg, is a sequence of bandwidths,
which satisfy the following assumptions:

- 104 -



27, 33

(A.8) The function K satisfies the Lipschitz condition of order 1, and K(0) > 0,K(u) >0
for 0 < u < 1 with [ K(u)du = 1.

(A.7) ho = 0, nho/logn — oo, and nh3 = 0, as n = oo.

The estimators 74 (z) and ¥_(z) are based on residuals only at the right and the left side
of z, respectively. We estimate the jump size at a point z by taking the differences of these
two estimators: A(z) = 7y (z) — 9_(z). A reasonable estimator 7 of 7 is the value of z that
maximizes Z(w). Let @ C (0,1) be a closed interval such that 7 € Q. Define

T= inf{z €Q:AR) = sgg&(z;)}

for the location of the change point 7. We assumed continuity of regression function in
(A.3). When both of regression function and variance function have the same change point,
T can be estimated based on the estimation of regression function. An estimator of the jump
size A may be obtained by
AR) =0,.(7) ~0_(). 5)
Now, we propose an estimator for the variance function using the estimated location of
the change point 7. Let W be a kernel function with support [—1, 1] satisfying the following
condition.

(A.8) The function W is a symmetric probability density function, and satisfies the Lips-
chitz condition of order 1.

Using the squared residuals R;, i = 1,---,n, we define
—~ ~ 1 i - X,-—z —~ 1 i - X,-—x —~
v(m,r)—EiZ:;W ( 5 ,T)R,/E;W (—h ,T). (6)

Here W* is defined by

u—z R ~

u—z W(uhx)llz_h’a(u)’ T—thST,

w* ( h 17-) = W(u——_ﬁm)lr;'z'*'h](u)’ ?stff_*_ h’
W( h ')a otherwise

with a sequence of bandwidths h = h,, satisfying the following condition.
(A.9) h— 0, and nh/logn — oo, as n — co.

The following theorem describes weak convergence of the sequence of the process {p,(2) :
—M < z < M} where

~ z ~
¢a(s) =nh {B(r+ 2) - A(n)}, (7)

and M < oo. The process ¢, lies in the space, denoted by C([-M, M]), of continuous
functions defined on [-M, M]. Let 2, denote weak convergence in the space C ([-M, M])
and s(z) = E[(Y —m(X))*|X = z]. To obtain the theorem, consider the following additional

assumptions:
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(A.10) The function & satisfies the Lipschitz condition of order 1.
(A:11) E(JY[**¢|X = z) < 00, for all  and some positive (.

Theorem 1. Suppose that the assumptions (A.1)-(A.7), (A.10) and (A.11) are satisfied.
Then,
on(z) 7 ¢(z) = ~AK(0)|z] + oW (2) (®)

where W (2) is a two-sided Brownian motion defined in Bhattacharya and Brockwell (1976),
and
o= 4k(T)
f(r)
Remark. Since the conditional central fourth moment k depends on v, it is highly possible
that k also has a change point at . In that case, the asymptotic variance part of the
limit process ¢ in (8) is slightly changed. Define k4(7) = limgyr4 k(z) and k_(7) =
limz_,r— k(z). Then, &(7) in (9) is replaced by k4(7) when z > 0, and by k_(7) when
z<0.

K(0). 9)

Next, we describe the asymptotic distribution of 7. For doing this, let Z be the maximizer
of the process . By K(0) > 0, the limit process ¢ in (8) has a unique maximizer with
probability one. See Remark 5.3 in Bhattacharya and Brockwell (1976) for more detail. Let
Z, be the maximizer of ¢,. By construction,

VA
T=7+ =,
n

By Theorem 5 in Whitt (1970), the weak convergence in Theorem 1 can be extended to the
space C(—00,00). Theorem 3 in Bhattacharya and Brockwell (1976) then gives Z, 2z,
where Z, is the global maximizer of ¢, on (—oc,00). Therefore, we have the following

corollary.

Corollary 1. Suppose that the assumptions in Theorem 1 are satisfied. Then,

n(7 — ) 2> argmaX,e(_ oo 00) {—AK(0)|2] + W (2)}.

Raimondo (1998) showed that the minimax optimal rate for the location problem is n~!

for a class of regression functions. Although the interesting function is variance, our proposed
estimator gets the rate of convergence n~! according to Corollary 1. The asymptotic variance
depends on f(7). The corollary tells us that the change point estimator gets more stable
as the density at the change point increases. As another consequence of Theorem 1, the
following corollary describes the asymptotic distribution of the estimator A(7) for the jump
size as defined at (5).

Corollary 2. Under the assumptions of Theorem 1,

N D (1) ! 2
Vaha(A(F) = A) —u\f(o,zm /0 (K (w)} du).
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If x has a change point at 7, it i3 easy to see that the asymptotic variance in Corollary

1
2 is replaced by {f(7)} " {x+(7) + n_(T)}/ {K (u)}du.
0
We now turn to the asymptotic property of the estimator of the variance function.
Theorem 2 gives the rate of global L, convergence of the estimator o(-; 7) in (6).

Theorem 2. Suppose that the assumptions (A.1)-(A.11) are satisfied. Then, forp > 1,

1 logn\? logn \? [logn\?
S p — 2p
/0 [6(z; 7) — v(z)|” dz = Op (h1 + (nh1 ) ) +Op (n hlh) + (h1 —h )

4
+|7 = 7|0p(1) + |7 = 7|POp(h7P) + Op (h"+ ( l_onng) ).(10)

The first two terms in (10) depend on the rate of global L, convergence of the estimator
m. Since Nadaraya-Watson type smoother guarantees the nonnegativity of the estimated
variance function based on squared residuals, we proposed that type smoother in (6) and
results in the order of squared bias in the last term is kP rather than A%P. In the L, sense,
if we choose two bandwidths as h; ~ h, the rate in (10) is then Op(h? + logn/(nh)) which
means that minimizing the terms in (10) does not depend on the rate of the estimator 7. It
implies that the estimator %(-; T) has the exactly same rate as for 7(-; 7), where the location
of the change point is known.

3. Numerical properties

To investigate the practical performance of the proposed estimator defined in Section 3,
a simulation study is carried out. For this, response-predictor pairs (X;,Y;),7 = 1,...,n
are generated according to the prescription (1) for various m and v. Kernel functions
L(u) = (1 -v?)? I(ju| < 1) and K(u) = 13(1-u?)? (0 < u < 1) are used to estimate the
mean regression function and the change point, respectively. For the estimation of variance
function, kernel function W is taken to the same as L.

In this section, we shall report only results for the following four settings. We get very
similar impression for the other cases. Cases (a), (b) and (c) represent typical types of
regression function and have homogeneous variance function with a change point. Case
(d) represent the case which has nonhomogeneous variance function with a change point.
Throughout, the distribution of predictor variable is assumed to be uniform in (0,1) and
T is estimated on [h,1 — h). Integrated squared error(ISE), the measure of performance, is
estimated on the interval [0, 1], using the trapezoidal rule. Average values are obtained from
500 simulations.

(a) mi(z) =z, v1(z) = 0.01I(z < 0.5) + 0.09 I(z > 0.5).

(b) ma(z) = 4z(1 — z), v2(z) = 0.01I(z < 0.75) + 0.16 I(z > 0.75).

(¢) ms(z) = 53(22% — 3z + 1), v3(z) = 0.49 I(z < 0.5) + 2.25I(z > 0.5).

(d) my(z) = 4z + 4exp{—100(z — 0.5)%}, va(z) = 591 I(z < 0.55) +4(1 — z)2 I(z > 0.55).

From the examination of mean integrated squared error(MISE), our estimates dominate
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variance estimates without change point estimation and the improvement gets larger as
sample size increases. Some plots of estimated variance functions show that the proposed

estimator works quite significantly.
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