• Title/Summary/Keyword: Statistical Error

Search Result 1,750, Processing Time 0.023 seconds

ON THE ADMISSIBILITY OF HIERARCHICAL BAYES ESTIMATORS

  • Kim Byung-Hwee;Chang In-Hong
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.3
    • /
    • pp.317-329
    • /
    • 2006
  • In the problem of estimating the error variance in the balanced fixed- effects one-way analysis of variance (ANOVA) model, Ghosh (1994) proposed hierarchical Bayes estimators and raised a conjecture for which all of his hierarchical Bayes estimators are admissible. In this paper we prove this conjecture is true by representing one-way ANOVA model to the distributional form of a multiparameter exponential family.

A Simple Bias-Correction Rule for the Apparent Prediction Error

  • Beong-Soo So
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.146-154
    • /
    • 1995
  • By using simple Taylor expansion, we derive an easy bias-correction rule for the apparent prodiction error of the predictor defined by the general M-estimators with respect to an arbitrary measure of prediction error. Our method has a considerable computational advantage over the previous methods based on the resampling thchnique such as Cross-validaton and Boothtrap. Connections with AIC, Cross-Validation and Boothtrap are discussed too.

  • PDF

LM Tests in Nested Serially Correlated Error Components Model with Panel Data

  • Song, Seuck-Heun;Jung, Byoung-Cheol;Myoungshic Jhun
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.4
    • /
    • pp.541-550
    • /
    • 2001
  • This paper considers a panel data regression model in which the disturbances follow a nested error components with serial correlation. Given this model, this paper derives several Lagrange Multiplier(LM) testis for the presence of serial correlation as well as random individual effects, nested effects, and for existence of serial correlation given random individual and nested effects.

  • PDF

Comparison of Confidence Intervals on Variance Component In a Simple Linear Regression Model with Unbalanced Nested Error Structure

  • Park, Dong Joon;Park, Sun-Young;Han, Man-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.459-471
    • /
    • 2002
  • In applications using a linear regression model with nested error structure, one might be interested in making inferences concerning variance components. This article proposes approximate confidence intervals on the variance component of the primary level in a simple linear regression model with an unbalanced nested error structure. The intervals are compared using computer simulation and recommendations are provided for selecting an appropriate interval.

EFFICIENT ESTIMATION OF THE COINTEGRATING VECTOR IN ERROR CORRECTION MODELS WITH STATIONARY COVARIATES

  • Seo, Byeong-Seon
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.4
    • /
    • pp.345-366
    • /
    • 2005
  • This paper considers the cointegrating vector estimator in the error correction model with stationary covariates, which combines the stationary vector autoregressive model and the nonstationary error correction model. The cointegrating vector estimator is shown to follow the locally asymptotically mixed normal distribution. The variance of the estimator depends on the co­variate effect of stationary regressors, and the asymptotic efficiency improves as the magnitude of the covariate effect increases. An economic application of the money demand equation is provided.

Asymptotic Properties of the Disturbance Variance Estimator in a Spatial Panel Data Regression Model with a Measurement Error Component

  • Lee, Jae-Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.349-356
    • /
    • 2010
  • The ordinary least squares based estimator of the disturbance variance in a regression model for spatial panel data is shown to be asymptotically unbiased and weakly consistent in the context of SAR(1), SMA(1) and SARMA(1,1)-disturbances when there is measurement error in the regressor matrix.

Bayesian inference for an ordered multiple linear regression with skew normal errors

  • Jeong, Jeongmun;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.2
    • /
    • pp.189-199
    • /
    • 2020
  • This paper studies a Bayesian ordered multiple linear regression model with skew normal error. It is reasonable that the kind of inherent information available in an applied regression requires some constraints on the coefficients to be estimated. In addition, the assumption of normality of the errors is sometimes not appropriate in the real data. Therefore, to explain such situations more flexibly, we use the skew-normal distribution given by Sahu et al. (The Canadian Journal of Statistics, 31, 129-150, 2003) for error-terms including normal distribution. For Bayesian methodology, the Markov chain Monte Carlo method is employed to resolve complicated integration problems. Also, under the improper priors, the propriety of the associated posterior density is shown. Our Bayesian proposed model is applied to NZAPB's apple data. For model comparison between the skew normal error model and the normal error model, we use the Bayes factor and deviance information criterion given by Spiegelhalter et al. (Journal of the Royal Statistical Society Series B (Statistical Methodology), 64, 583-639, 2002). We also consider the problem of detecting an influential point concerning skewness using Bayes factors. Finally, concluding remarks are discussed.

Measurement Error Variance Estimation Based on Complex Survey Data with Subsample Re-Measurements

  • Heo, Sunyeong;Eltinge, John L.
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.553-566
    • /
    • 2003
  • In many cases, the measurement error variances may be functions of the unknown true values or related covariates. This paper considers design-based estimators of the parameters of these variance functions based on the within-unit sample variances. This paper devotes to: (1) define an error scale factor $\delta$; (2) develop estimators of the parameters of the linear measurement error variance function of the true values under large-sample and small-error conditions; (3) use propensity methods to adjust survey weights to account for possible selection effects at the replicate level. The proposed methods are applied to medical examination data from the U.S. Third National Health and Nutrition Examination Survey (NHANES III).

Statistical Study on Correlation Between Design Variable and Shape Error in Flexible Stretch Forming (가변스트레치성형 설계변수와 성형오차의 상관관계에 대한 통계적 연구)

  • Seo, Y.H.;Heo, S.C.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.124-131
    • /
    • 2011
  • A flexible stretch forming process is useful for small quantity batch production because various shape changes of the flexible die can be achieved conveniently. In this study, the design variables, namely, the punch size, curvature radius and elastic pad thickness, were quantitatively evaluated to understand their influence on sheet formability using statistical methods such as the correlation and regression analyses. Forming simulations were designed and conducted by a three-way factorial design to obtain numerical values of a shape error. Linear relationships between the design variables and the shape error resulted from the Pearson correlation analysis. Subsequently, a regression analysis was also conducted between the design variables and the shape error. A regression equation was derived and used in the flexible die design stage to estimate the shape error.

A two-step approach for variable selection in linear regression with measurement error

  • Song, Jiyeon;Shin, Seung Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • It is important to identify informative variables in high dimensional data analysis; however, it becomes a challenging task when covariates are contaminated by measurement error due to the bias induced by measurement error. In this article, we present a two-step approach for variable selection in the presence of measurement error. In the first step, we directly select important variables from the contaminated covariates as if there is no measurement error. We then apply, in the following step, orthogonal regression to obtain the unbiased estimates of regression coefficients identified in the previous step. In addition, we propose a modification of the two-step approach to further enhance the variable selection performance. Various simulation studies demonstrate the promising performance of the proposed method.