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A Simple Bias-Correction Rule
for the Apparent Prediction Error!

Beong-Soo So2)

Abstract

By using simple Taylor expansion, we derive an easy bias-correction rule for the
apparent prediction error of the predictor defined by the general M-estimators with
respect to an arbitrary measure of prediction error. Our method has a considerable
computational advantage over the previous methods based on the resampling
technique such as Cross-validaton and Boothtrap. Connections with AIC,
Cross-Validation and Boothtrap are discussed too.

1. Introduction

In a pioneering paper in the statistical model identification problem , Akaike (1973) proposed
a new criterion for the model choice which is equivalent to the following : If k indexis the

model , choose the model kK to maximize the quantity ;

AIC(k) = L(PBr: k)-p« (1.1)

where L(PBx : k) is the maximized log-likelihood function of the model k, Bx is the MLE(

Maximum Likelihood Estimator) of the parameter Bx and px is the dimensionality of the
parameter PBx.  Akaike's criteria , which is better known as AIC (Akaike Information

Criterion) in the literature , stemmed from the clear recognition that unreserved maximization
of the likelihood provides an unsatisfactory method of choice between models that differ
appreciably in their dimensionality.

On the other hand , Efron (1983),(1986) considered the problem of the downward bias of the
apparent prediction error in the GLM (Generalized Linear Model) and compared the
performances of several bias correction methods ,including computer-intensive resampling
methods such as Cross-Validation and Boothtrap , for the apparent prediction error and noted
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incidentally that one of the method coincides with AIC for the special deviance-type loss
functon.

Our main objective in this paper is to unify bias—correction techniques of Akake (1973) and
Efron (1986) and to derive a simple bias-correction rule for the apparent prediction error
which is applicable not only to the arbitrary predictor based on the general M-estimator and
but also to any measure of prediction eror.

In addition to the generality of the method , our method has a cosiderable computational
advantage over the other computer-intensive resampling methods such as Cross-Validation
and Boothtrap . When used as a model identification criterion, our method can be considered
as a non-parametric alternative to AIC . As a versitile data-analytic tool, it can be applied
effectively not only to the problem of assesing predictive powers of the familiar likelihood
based predictors in the general regression set-up such as GLM but also to the problem of
discriminating various non-linear predictors in the multivariate regression and the discriminant
analyses.

This paper is organized as follows ; In section 2 we derive a key lemma which will provide
a simple useful bias-corrected estimate of the expected prediction error of an arbitrary
non-linear predictor based on the general M-type estimator . Then we consider the
relationship of our method and other alternative non-parametric methods such as
Cross-Validation and Boothtrap and show that they are all asymptotically equivalent . In
section 3 we give several examples which illustrate versitility of our simple bias-correction
rule in evaluating predictive powers of the various predictors including ones based on the
ridge-type estimator occuring in the linear and logistic regression models with respect to
arbitrary prediction errors.

2. Main Result

Let (X,Y1),, (XaYs), (X,Y) be a random sample from the common distrbution P
defined on the sample space S=S5S:XS,. Let AX;B) BEB be the class of possible

predictors of Y of given functional form containing unknown parameter vector B which
represents the possible choice available to the statistician. Suppose we have a goodness of fit
measure L(Y, fX,B)) which reflects the prediction error of the predictor AX ,B) derived

from the estimator B selected by the statistician. Ideally the best choice for the statistician
will be the B" which is defined by :

B*= arg min ses Ep[L(Y, £ X;B)] . 2.1

Because we do not know the true underlying distribution P of (X,Y) in practice , we are
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forced to use some empirical estmate B of B'. For example we may substitute B* by its

empirical version B which is formally defined by :

B = arg min pes guy,-, AXiB)/n . 2.2)

In accessing goodness of the possible choice B , two different notions of prediction errors

are relevent :
First , we have the conditional prediction error defined by ;

PE(B) = Ep(L(Y,£X:B) (2.3)
and secondly we may consider unconditional expected prediction error defined by ;

E PEM®)] = E.lEp(L(Y,f(X;B)] (2.4)

where expectaion in (2.3) is taken with respect to the new observation (X,Y) only and the
double expectations in (2.4) are taken with respect to the trainning data (X1,Y1),  (Xn,Yn)

and new data (X,Y) simultaneously.

In this framework our main objective in this paper is to find a good estimate of the
expected prediction error (2.4) of an arbitrary predictor fX;B) defined by the statistician with
respect to an arbitrary prediction error. The most natural and widely used estimate is the

naive resubstitution estimate of the prediction error of the predictor which is often called
apparent prediction error in the literature and is defined by the formula :

PE(D) = (1/n>gL(Y,-,f<X,-;%)) 25)

One of the most serious drawback of the naive estimate (2.5) is that it underestimates the
true prediction error in most cases. As is well-known in the variables—selection problem in
the regression and discriminant analyses , this may cause a serious problem of overfit when
we have several alternative predictors which may have widely differnt number of parameters.

In order to remove the systematic negative bias of the naive resubstituion estimate and to
get the better estimate of the prediction error , we first introduce the notion of excess error
( or optimism ) of the naive estimate (2.5) by ;

A(PBR) = PE(Bo-PE(B . (2.6)

Next lemma , which is easy to prove but very useful , will be the basis for the derivation
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of the right bias—corection rule and finally will provide better estimate of the true prediction
error of the arbitrary prediction rule defined by the general M-estimator with respect to
arbitrary measures of prediction errors.

Lemma. Let L(y,fxB)) be a function which is twice differentiable with respect to
BEBCR® for any (xy)ES. Suppose we can interchange the integral and differentiation

signs in the following . Then we have :

MB) = PEB) - PE(®)
= Er(LVAXB)) - gL(yi,ﬂXi;u))/n

+ Ep[Ls(Y,fX:B) - (B-B)] - ?;Ln(Yi,f(Xi,B))/n'(ﬁ-B) Q27

+ (1/2)(B-B) [ErLa(Y, (XB)) - gLaa(Y,-,ﬂx.-:E))/n](ﬁ—m

where Ls=[3L/8Bi] is a 1xk gradient vector , Lgp=[8°L/3B;3B;] is a kxk Hesseian

matrix and B=AB+(1-M)B , 0<A<1 .
Proof . If we expand A(B) around B upto second order terms by the Taylor series , we
get the result ;

A(B)=A(B)+As(BY(B-B)+(B-B)" Ap(B)B-B)2

immediately where Ap=[3A/3B;] is alxk vector and Ag=[3°A/aB;aB;] is akxk
matrix . This completes the proof.

Remark 1. The above formula (2.7) represents the canonical decomposition of the excess error
A(B) of the naive resubtitution estimate PE(B) into three parts :

A(B)=Ap+Bn+ra (2.8)

where An=A(B) is a random part with zero expectation and B.=As(B)(B-B) represents the
systematic bias term and finally r,=0(1/n) is a small error term which is negligible in most

cases.
One immediate consequence of the above lemma is the simple representation of the expected
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excess error of the arbitrary predictor defined by the M-estimator . Suppose that we have an

estimator B of B which is asymptotically linear in the sense that :
B-p= Zn;M(Xi,Y.':B,P)/n+o(1/\/E) 2.9)

where M(X,Y;B,P) is the kx1 vector of influence function of the estimator B such that
Ep[M(X)Y;B,P)]=0 .
Then we note that .

EalA(B)] = -[Ls,MVn + o(1/n) (2.10)

k
where [Ls,MI=E(Lp * M)=EP[§( aL/aBy) M.

Remark 2. Above expression (2.10) for the expected optimism show the average amount of
under—estimation of the naive resubstitution estimate of prediction error of the predictor

defined by the M-estimator B.

In practice we have to use some empirical estimate of the bias term [L,M]1. For example

we can use the estimate ;
[L,M] = ;Ln(Yi,Xi:,ﬁ) -M(X:,Yi;B,Pr) /n (2.11)

where P, is the empirical distribution of the random sample S={(X;Y:)}%1 .
Motivated by the above result, we now introduce the following bias-corrected estimate of
the expected prediction error of the predictor AX;B).

Definition. We define the bias-corrected estimate PEa(B) of the expected prediction error

EJPEB)] by

PEA(B)= PE(B)-TL,M)/n . (2.12)

Remark 3. Suppose that L(Y,X;B)=-logAYIX,B) for some parametric family of

conditional probability density functions of Y given X and assume B= arg maxeiUlf (YilXi,B)

is the conditional MLE of the parameter B . Then , under usual regularity conditions , we
have typically ;
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B-p = -[EPLaa(Y,X;B)]_lgLa(Yi,Xi;B)/n + o) . (2.13)

Thus our expression for the bias—corrected estimate of the expected prediction error reduces
to the trace-type criteria which is sometimes called TIC (Trace Information Criterion) in the
literature ;

TIC(IA3)=—glogf(Yi|Xi,ﬁ) + T (Tw - (LhLp)] (2.14)

where
L= §Laa(Yf,Xi:E>/n

(LhLo) = 3iLs (Y5, XiiB) Lo(¥i, XiiB)/n .

See the Appendix of Linhart and Zucchini (1986) for more detailed reguraity conditions in
this special case.

Remark 4. If we further assume that the conditional distribution of Y given X has the
probability density function f(Y|X:.B) for some B with respect to a dominating measure Hy

in Sy, we get

Tri(EpLw) MEp(Ls ,Le))] = Trle) = k
and our criterion reduces to the simpler criterion AIC
-AIC(ﬁ)=-§10gj(Yi|X1,ﬁ) + k. (2.15)

Remark 5. As is noted by Efron (1983) , there are two well-known non-parametric
estimates of the expected prediction errors , Cross—Validation and Boothtrap estimates , which
are defined respectively by

PEcy = gL(Y.-,X,-; B-:)/n (2.16)
PEgox = PE(B)+E* ot PE(BY)- PE*(BY)] 2.17)

where B-; is the estimate of B computed from the deleted data set

S-i= {(X1,Y1), =, (Xi-1,Yi-),( Xie1,Yie1), ~ (Xn,Yn)}, P, is the empirical distribution of the
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data set S={(X;, Y}, S'={(X; Y} is the Boothtrap sample of size n drawn from
the empirical distribution P, and /B\‘ is the estimate of B computed from the Boothtrap

sample S° and the expectation E'psf <] in (217) is taken with respect to the Boothtrap

sample S~.
Stone (1977) demonstrated that PE4 and PEc¢v are asymptotically equivalent when the

condition (2.13) holds. On the other hand, if we apply (2,10) to the Boothtrap sample S’
drawn from the empirical distribution P, , we obtain the result ;

5

B - B= 2M(XLYEB, Po/n + o) . 2.18)
This in turn implies that ;

PEpox = PE(B)+E" m~[A(B)]

= PE(B) - E'stL(Y" X" BIM(Y",X";B, P.)i/n + o(l/n)

PE(B) - [L,M]/n + o(1/n)
PEA(B) + o(1/n) (2.19)

where we have used the lemma applied to the Boothtrap sample S° drawn from the empirical

distribution P, . This establishes the asymptotic equivalence of PE4 and PE goo:.

3. Examples and Discussions

In this section we give several examples which illustrate the computation of the appropriate
bias—correction terms for the apparent prediction errors of the various non-linear predictors
with respect to different measures of prediction errors .

Example 1. ( Linear Regression ) Here we consider the linear predictor
o~ ~ k —
yvix)=fx;B)= Z; Bix; 3.1
based on the OLS (Ordinary Least Squares) estmator B given by :

B=(Sxx) 'Sxv
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where Sxx=[§Xinik/n] is a kXk matrix and SXY=[‘;YL‘XU/”] is a kx1 vector. If

we use the usual square-error loss function L(y, jh=(y—§)2 , we obtain, as a bias—-corrected

estimate of the prediction error of the linear predictor (3.1), the expression ;

PEA(B) = SSE(B)/n + 2 Tr( Sxx *Skx)/n (3.2)
immediately from (2.12) where S}X=[§;e?x,-,~x,k/n] . SSE(®) = g;e? and e; = Y- B X.

Example 2. ( Ridge Regression ) Suppose we use the ridge-regression estimator B(a)
of B ;

Bla)=(Sxx+ali) 'Sxy  a>0 (3.3)

instead of the OLS estimator B . Then we obtain the following bias-corrected estimate of
the prediction error of the corresponding predictor ; fX, B(a)) =B (a)” X .

PEA(B(a)) = SSE(B(a))/n + 2Tr[(Sxx+ale) 'Six] (3.4)

where SSE<ﬁ<a))=g";<Y.~—ﬁ(a)’X.-)2 and 5§X=[g<eixi+au)(ex;+as)’/n] . Note that we

can use the minimizer of the expression (3.4) as an alternative estimator of the smoothness

parameter d in the ridge-regression estimator .

Example 3. ( Logistic Regression ) Here we assume that we have a binary response
variable Y with a vector X of several predictor variables and the conditionnal distribution of
Y given X is a Bernoulli distribution with success probability P(Y=11X)=p(X) . Suppose
also that we have a simple logistic model ;

) k
log (p(X:)/(1-p(Xi)) = B X; = ]Z_{BJXU , i=1,,n

where X;=[Xjj] is a kX1 vector of regressor variables i-th subject.

Then the MLE B of B , which is defined implicitly as the unique solution of the likelihood

equation, satisfies the following relation ;
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B-p = (gpi(l—pi)X.'Xf /n)‘l(g(yi—p,-)xi/m +0(1/vn)

where pi=p(Xi;B) = ?X; . If we use the loss function L(y,p)=(y-p)% then we obtain

the bias -corrected estimate of the prediction error of the predictor p(X;B) ;

PEA(B) = SSE/n + (2/n) Trl ;:;pi( 1-p) XX, /X g";e?pi( 1-p) Xi X, /n) 35)

where SSE= ze? , e€i=Yi-p(Xi:B). On the other hand, if we use the minus log-likelihood
£

as a loss function : L(y,p}=-ylog(p/(1-p)+log(1-p) , we get the following result ;

PEA(B)= g";uy,-,m X B))/n + Trl( gpz(l—pi)Xin /n)~X( ge?xix,f /ml . 36

Remark 6. If we consider a fxed-regressor regression model and use the appropriate
definition of prediction errors as in Efron (1986), we may derive an analogue of the lemma for
the fixed-regressor case and obtain the similar bias-correcton rule for the apparent prediction
errors. This possibility and other modifications will be considered in a seperate paper.
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