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Abstract
The ordinary least squares based estimator of the disturbance variance in a regression model for spatial

panel data is shown to be asymptotically unbiased and weakly consistent in the context of SAR(1), SMA(1) and
SARMA(1,1)-disturbances when there is measurement error in the regressor matrix.
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1. Introduction

When disturbances in the linear regression model are correlated or have unequal variances, it is
well known that the ordinary least squares(OLS) based estimator of the disturbance variance, S 2, is
generally biased and inconsistent. Also, spatial dependence models which are widely used in urban
and environmental economics cannot avoid these disadvantages. Although spatial panel regression
models are becoming increasingly attractive in empirical econometrics, the related literature mainly
focuses on the maximum likelihood or generalized moments estimation and hypothesis testing.

In regression analysis, the (potential) presence of measurement error in the explanatory variables
results in bias and inconsistency of the OLS estimates and thus severely affect the quality of regression
analysis. In order to solve this problem, some extraneous information or additional assumptions are
needed to identify the model parameters of interest. Griliches and Hausman (1986) showed that one
can control the measurement error without the use of external instruments using panel data. However,
they only considered the simplest situation of a single regressor. In addition, several steps need to be
performed to obtain consistent estimators, which causes the individual effect to be wiped out.

Many articles have investigated the behavior of the bias of S 2 (Watson, 1955; Theil, 1971; Sathe
and Vinod, 1974; Neudecker, 1977, 1978; Dufour, 1986, 1988; Krämer, 1991; Kiviet and Krämer,
1992). Especially, Krämer (1991) showed that the OLS estimator of S 2 in the linear regression model
is asymptotically unbiased in the context of AR(1)-disturbances without any restrictions on the re-
gressor matrix. In addition, Baltagi and Krämer (1994) showed the asymptotic unbiasedness and
consistency of S 2 in the panel regression model with error component disturbances, and Song (1996)
extended their work to the serially correlated error components regression model for panel data. Also,
Song and Kim (2006) and Song and Lee (2008) studied the asymptotic properties of S 2 in a panel
data regression model with measurement error and with spatially correlated error, respectively.

In this paper, we will investigate the asymptotic unbiasedness and weak consistency of S 2 in a
panel data regression model with measurement error when the disturbances follow SAR(1), SMA(1)
and SARMA(1,1) processes.
1 Ph.D. Student, Department of Statistics, The University of Georgia, Athens GA 30602, USA. E-mail: junstat@gmail.com



350 Jaejun Lee

2. Model

As a point of departure, consider the following panel data regression model (Hsiao, 1986; Baltagi,
2001),

yit = βxit + uit, i = 1, . . . ,N; t = 1, . . . ,T, (2.1)

where yit is the observation on a dependent variable for the ith spatial unit (e.g., country, census track)
at the tth time period, xit denotes the k × 1 vector of independent variables and uit is the regression
disturbance. Moreover, the xit is observed with error,

x∗it = xit + υit, i = 1, . . . ,N; t = 1, . . . ,T,

where υit represents the measurement error, which is assumed to be i.i.d.(0, σ2
υ). Song and Kim (2006)

considered an additive measurement error components structure, which is related with an individual
and remainder. However, we separately consider a single measurement error component as well as
region effect as below.

The regression disturbance uit follows an error components structure:

uit = µi + εit, i = 1, . . . ,N; t = 1, . . . , T,

where µi denotes the ith random spatial effect assumed to be i.i.d.(0, σ2
µ) and εit is the remainder dis-

turbance which is independent of µi. We let εit follows a first-order spatial autoregressive(SAR(1)),
a first-order spatial moving average(SMA(1)), or a first-order spatial autoregressive moving aver-
age(SARMA(1,1)) error model as follows (for extensive technical discussion, see Anselin, 1988,
2003; Anselin and Bera, 1998, and references therein):

εit =



ϕ

N∑
k=1

wikεkt + νit, : SAR(1) process,

θ

N∑
k=1

wikνkt + νit, : SMA(1) process,

ϕ

N∑
k=1

wikεkt + θ

N∑
k=1

wikνkt + νit, : SARMA(1,1) process

where ϕ is the scalar spatial autoregressive coefficient with |ϕ| < 1, θ is the scalar spatial moving
average coefficient with |θ| < 1, wik is the (i, k) th elements of N × N spatial weight matrix W, and νit

is i.i.d.(0, σ2
ν) and independent of µi. We assume that all error components are mutually independent.

More specifically, each element in the weight matrix can be defined as

wik =


1

N − 1
, if i , k,

0, if i = k.
(2.2)

as in Case (1992), Kelejian and Prucha (2002), Kelejian et al. (2006) and Lee (2004). As another
example, we can consider the following popular specification for the weight matrix known as “one
ahead and one behind:”

w12 = w1N = wN1 = wN,N−1 = wi j = 1, with i = 2, . . . ,N − 1, j = 1, . . . ,N, |i − j| = 1
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and renormalize the rows such that the row sums are one (Kelejian and Prucha, 1999; Krämer and
Donninger, 1987). We can also consider the orthogonal weight matrix, and its elements are defined
by (Cliff and Ord, 1981)

wik =

{
> 0, if regions i and k are neighbors (i , k),
= 0, otherwise.

The model (2.1) can be rewritten in matrix notation as

y = Xβ + e, (2.3)

where y is now of dimension NT × 1, X is NT × k, β is k × 1 and e is NT × 1. The error term e can be
written in vector form as

e = υ + u =


υ + (IN ⊗ ι̇T )µ +

(
B−1 ⊗ IT

)
ν, : SAR(1) process,

υ + (IN ⊗ ι̇T )µ + (A ⊗ IT ) ν, : SMA(1) process,
υ + (IN ⊗ ι̇T )µ +

(
B−1A ⊗ IT

)
ν, : SARMA(1,1) process,

(2.4)

with υ′ = (υ11, . . . , υN1, . . . , υ1T , . . . , υNT ), µ′ = (µ1, . . . , µN) and ν′ = (ν11, . . . , νN1, . . . , ν1T , . . . , νNT ),
where ι̇T is a T × 1 vector of ones, IT is a T × T identity matrix, ⊗ denotes the Kronecker product,
B = IN − ϕW is nonsingular for all |ϕ| < 1 and A = IN + θW.

From next section, we will focus on SARMA(1,1) process with the weight matrix of (2.2) since
for other processes with any weight matrices mentioned above, we can similarly prove the asymptotic
unbiasedness and weak consistency of S 2. We therefore see that our proof is applicable in many
relevant spatial econometric specifications; however, note that our method of proof could be different
if we use a different weight matrix from the matrices mentioned above.

3. Asymptotic Unbiasedness

Theorem 1. In the panel regression model (2.3) with measurement error and SARMA(1,1) error
terms and the equal weight matrix of (2.2), S 2 is asymptotically unbiased for σ2 as N and T go to
infinity.

Proof: Under the assumptions in the previous section, the error covariance matrix is

E(ee′) = Ω = σ2
υINT + σ

2
µ(IN ⊗ JT ) + σ2

ν

{(
B−1A

) (
B−1A

)′ ⊗ IT

}
,

where JT is a T × T matrix of all ones. We can rewrite two matrices A and B−1 as A = α1N JN +α2N IN

and B−1 = α3N JN + α4N IN , respectively, where α1N = θ/(N − 1), α2N = (N − 1 − θ)/(N − 1), α3N =

ϕ/{(N − 1 + ϕ)(1 − ϕ)} and α4N = (N − 1)/(N − 1 + ϕ) (Kelejian and Prucha, 2002). Then

B−1A = (Nα1Nα3N + α2Nα3N + α1Nα4N)JN + α2Nα4N IN (3.1)
= π1N JN + π2N IN

and (
B−1A

) (
B−1A

)′
=

[
N (π1N)2 + 2π1Nπ2N

]
JN + (π2N)2 IN (3.2)

= π∗N JN + (π2N)2 IN ,
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where π1N = Nα1Nα3N + α2Nα3N + α1Nα4N , π2N = α2Nα4N and π∗N = N(π1N)2 + 2π1Nπ2N . Moreover,

Var(eit) = σ2
υ + σ

2
µ + σ

2
ν

[
π∗N + (π2N)2

]
= σ2

υ + σ
2
µ + σ

2
ν γN ,

where γN = π
∗
N + (π2N)2.

From Watson (1955), Sathe and Vinod (1974), Neudecker (1977), Dufour (1986, 1988), Krämer
(1991) and Kiviet and Krämer (1992), we have the inequalities

0 ≤ mean of NT − k
smallest characteristic roots of Ω

≤ E
(
S 2

)
≤ mean of NT − k

greatest characteristic roots of Ω
≤ tr(Ω)

NT − k
,

which imply that the upper bound for E(S 2) tends to σ2 (= σ2
υ + σ

2
µ + σ

2
ν) , as N and T go to infinity

since trace(Ω) = NT {σ2
υ + σ

2
µ + σ

2
ν γN} and γN tends to 1. Furthermore, the mean of the NT − k

smallest characteristic roots of Ω is as N,T → ∞

1
NT − k

NT−k∑
l=1

λl+k(Ω) =
1

NT − k

 NT∑
l=1

λl(Ω) −
k∑

l=1

λl(Ω)


≥ σ2

υ +
NT − kT
NT − k

σ2
µ +

NT
NT − k

γNσ
2
ν −

k
NT − k

(
1 + θ
1 − ϕ

)2

σ2
ν

→ σ2
υ + σ

2
µ + σ

2
ν = σ

2,

since from the inequality of Horn and Johnson (1985, p.181) we have

λl(Ω) ≤ λl

{
σ2
υINT + σ

2
ν

[(
B−1A

) (
B−1A

)′ ⊗ IT

]}
+ λmax

{
σ2
µ (IN ⊗ JT )

}
= λl

{
σ2
υINT

}
+ λi

{
σ2
ν

(
B−1A

) (
B−1A

)′}
λt(IT ) + Tσ2

µ

= σ2
υ +

(
1 + θλi(W)
1 − ϕλi(W)

)2

σ2
ν + Tσ2

µ

≤ σ2
υ +

(
1 + θλmax(W)
1 − ϕλmax(W)

)2

σ2
ν + Tσ2

µ

≤ σ2
υ +

(
1 + θ
1 − ϕ

)2

σ2
ν + Tσ2

µ, l = 1, . . . ,NT, (3.3)

where λ(·) denotes characteristic roots of · . Therefore, the lower bound for E(S 2) also goes to σ2.
This completes the proof. �

4. Consistency

Krämer and Berghoff (1991) provided that a sufficient condition for consistency of the standard
OLS-based estimator of the disturbance variance in the linear regression model with correlated distur-
bances. Based on their result, we establish the consistency of S 2 in the model (2.3) with measurement
error and SARMA(1,1) process error terms in (2.4).

Theorem 2. In the panel regression model (2.3), S 2 is weakly consistent as N and T go to infinity
if the disturbances υ’s, µ’s and ν’s in measurement error and SARMA(1,1) process error terms of
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(2.4) with the equal weight matrix of (2.2) have finite fourth moments; that is, E(υ4
it) = τ < ∞,

E(µ4
i ) = η < ∞ and E(ν4

it) = ξ < ∞.

Proof: According to Krämer and Berghoff (1991), S 2 is weakly consistent, if the following holds:

e′e
NT − k

p
−→ σ2 and λmax (Ω) = o(NT ). (4.1)

First, we have

e′e
NT − k

=
1

NT − k

{
υ′υ + Tµ′µ + υ′ (IN ⊗ iT ) µ + µ′

(
IN ⊗ i′T

)
υ

+ υ′
(
B−1A ⊗ IT

)
ν + µ′

(
B−1A ⊗ i′T

)
ν + ν′

((
B−1A

)′ ⊗ IT

)
υ + ν′

((
B−1A

)′ ⊗ iT
)
µ

+ ν′
((

B−1A
)′ (

B−1A
)
⊗ IT

)
ν
}
.

We now examine the mean and variance of each term in the equation above.

(i) The mean and variance of the first term are

E
(

υ′υ

NT − k

)
=

trace(E(υυ′))
NT − k

=
NTσ2

υ

NT − k
→ σ2

υ and

Var
(

υ′υ

NT − k

)
=

(
1

NT − k

)2 {
Var

(
υ2

1

)
+ · · · + Var

(
υ2

NT

)}
=

(
1

NT − k

)2 {
E

(
υ4

1

)
+ · · · + E

(
υ4

NT

)
− NTσ4

υ

}
=

(
1

NT − k

)2 (
NTτ − NTσ4

µ

)
→ 0, respectively.

Thus, (υ′υ)/(NT − k)
p
−→ σ2

υ, as N,T → ∞.

Likewise, (Tµ′µ)/(NT − k)
p
−→ σ2

µ, as N,T → ∞.Note again that υ, µ and ν are all independent
of each other and their means are zeros.

(ii)
υ′(IN ⊗ iT )µ

NT − k
p
−→ 0, since E

{
υ′(IN ⊗ iT )µ

NT − k

}
= 0 and Var

{
υ′(IN ⊗ iT )µ

NT − k

}
→ 0, as N,T → ∞.

In the same way, it can be easily shown that {µ′(IN ⊗ i′T )υ}/(NT − k) tends to zero.

(iii) The mean and variance of the fifth term are

E
{
υ′(B−1A ⊗ IT )ν

NT − k

}
= E

{
υ′(π1N JN ⊗ IT )ν

NT − k

}
+ E

{
υ′(π2N IN ⊗ IT )ν

NT − k

}
= 0,

since B−1A = π1N JN + π2N IN as in (3.1), and

Var
{
υ′(B−1A ⊗ IT )ν

NT − k

}
=

1
(NT − k)2 Var

{
υ′ [(π1N JN + π2N IN) ⊗ IT ] ν

}
=

1
(NT − k)2

{
NT (π1N + π2N)2 + NT (N − 1)(π1N)2

}
σ2
υσ

2
ν → 0,
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respectively.

Thus, {υ′(B−1A ⊗ IT )ν}/(NT − k)
p
−→ 0.

Similarly, {µ′(B−1A⊗ i′T )ν}/(NT − k), {ν′((B−1A)′⊗ IT )υ}/(NT − k), and {ν′((B−1A)′⊗ iT )µ}/(NT
−k) converge to zero in probability.

(iv) For the last term, from (3.2),

E

ν
′
[
(B−1A)′(B−1A) ⊗ IT

]
ν

NT − k

 = 1
(NT − k)

{
π∗N E

[
ν′(JN ⊗ IT )ν

]
+ (π2N)2E(ν′ν)

}
=

1
(NT − k)

{
π∗N NTσ2

ν + (π2N)2NTσ2
ν

}
→ σ2

ν

and

Var
{
ν′[(B−1A)′(B−1A) ⊗ IT ]ν

NT − k

}
=

1
(NT − k)2

{
(π∗N)2Var

[
ν′(JN ⊗ IT )ν

]
+ (π2N)4Var(ν′ν) + 2π∗N(π2N)2Cov

[
ν′(JN ⊗ IT )ν, ν′ν

]}
=

1
(NT − k)2

{
(π∗N)2NT

(
ξ + σ4

ν(2N − 3)
)
+ (π2N)4NT

(
ξ − σ4

ν

)
+ 2π∗N(π2N)2NT (ξ − σ4

ν)
}

→ 0, as N,T → ∞.

Thus, [ν′{(B−1A)′(B−1A) ⊗ IT }ν]/(NT − k)
p
−→ σ2

ν .

Accordingly,
e′e

NT − k
p
−→ σ2

υ + σ
2
µ + σ

2
ν = σ

2.

Moreover, by (3.3),

λmax (Ω) ≤ σ2
υ +

(
1 + θ
1 − ϕ

)2

σ2
ν + Tσ2

µ,

which means that λmax (Ω) = o(NT ). Hence the Theorem follows from the above arguments. �

5. Conclusions

This paper examines the asymptotic properties of the disturbance variance estimator in a a panel data
regression model with spatial autocorrelation and measurement error. It is clear that the spatial au-
tocorrelation and measurement error lead to bias and inconsistency of the OLS estimates. However,
there are very few published studies on the problem concerning the bias and inconsistency of S 2.
Griliches and Hausman (1986) and Kapoor et al. (2007) studied the consistency using the generalized
method of moments in the spatial panel regression model and the panel regression model with mea-
surement error, respectively. However, their methods need several assumptions and steps to establish
suitable properties.

In this paper, the OLS-based estimator of the disturbance variance, S 2 is shown to be weakly con-
sistent and asymptotically unbiased for a panel data regression model when measurement error exists
in the regressor matrix and the disturbances follow SAR(1), SMA(1) and SARMA(1,1) structures,
based on very simple assumption that the disturbances have finite fourth moments.
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Krämer, W. (1991). The asymptotic unbiasedness of S 2 in the linear regression model with AR(1)-
disturbances, Statistical Papers, 32, 71–72.
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