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LM Tests in Nested Serially Correlated Error
Components Model with Panel Data

Seuck Heun Song,! Byoung Cheol Jung? and Myoungshic Jhun?

ABSTRACT

This paper considers a panel data regression model in which the dis-
turbances follow a nested error components with serial correlation. Given
this model, this paper derives several Lagrange Multiplier(LM) tests for the
presence of serial correlation as well as random individual effects, nested
effects, and for existence of serial correlation given random individual and
nested effects.

Keywords: Panel data model, Nested error component, Autocorrelation, LM
tests.

1. INTRODUCTION

Breusch and Pagan(1980), Engle(1984) and Godfrey(1989) demonstrated the
wide applicability of Lagrange Multiplier(LM) test to various model specifications
in econometrics. The LM test is based on the estimation of the model under null
hypothesis and its computation requires only ordinary least squares residuals. In
the context of error components model, most researcher have been provided the
LM test for testing the existence of the various error components in panel data
model. Breusch and Pagan(1980) seem to be the first to derive a simple LM test
for testing whether the variance components are both zero or individually zero
with panel data. Recently, Baltagi and Li(1991) proposed a joint test for existence
of serial correlation and random individual effects in an error component model
with first-order serial correlation remainder disturbances

In many economic studies, the panel data may contain nested groupings.
For example, data on firms may be grouped by industry, data on state by re-
gion and data on individuals by profession. In this case, one can control for
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unobserved industry and firms effects using a nested error components model.
See Montemarquette and Mahseredjian(1989) for an empirical application of the
nested error component model to study whether schooling matters in educational
achievements in Montreal’s Francophone public elementary schools. In addition,
we allow the remainder disturbances to be serially correlated. This allows for
decaying effects of the remainder shocks over time in addition to the equicorre-
lation due to the random effects which is persistent over time, see Lillard and
Willis(1978)and Pantula and Pollock(1985). For this error component model, we
derive a LM test which jointly tests for the presence of serial correlation as well
as random individual effects and nested effects.

This joint test suffers from the problem of overtesting, see Bera and Jar-
que(1982). This paper proposes conditinal LM test for existence of serial corre-
lation assuming that the random individual and nested effects are given.

2. THE MODEL
We consider the following panel data regression model
Yijt = TijB + Ui, t=1,--- M, j=1,--- ,Nandt=1,---,T, (1)

where y;;; be an observation on a dependent variable for the jth firm in the ith
industry for the tth time period. z;;; denotes a nonstochasticregressor vector of
k independent variables. The disturbances of (1) are given by

uijt = ps +vij +€i5t, t=1,---,M, j=1,--- ,Nandt=1,---,T, (2)

where the u;’s denote the industry specific effects which are assumed to be 4.i.d.
(0,02) and the v;;’s denote the nested effects which are i.i.d. (0,02). The &5
are the remainder disturbances which are also assumed to be €;;; = peiji—1 + €ijt,
lol < 1 with E(e;s) = 0, Var(eit) = 02 and Cov(eijr, ijs) = 0, s # t. The
1;’s, vi;'s and the €;5¢’s are independent. This is a panel data model with nested
serially correlated error components (Pantula and Pollock, 1985). This assumes
that there are M industries with N firms in each industry observed over T periods.
The model (1) can be written in matrix notation as

y=XB+u, (3)

where y is an MNT x 1 observation vector, X is an MNT x k design matrix,
B is a k x 1 vector of regression coefficients and u is an MNT x 1 disturbance
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vector. In vector form, (2) can be written as
u = (IM®iN®ir)p+ (IM®IN®ir)V +E¢, (4)

where i = (p1,- -+ ,um), V' = (v11,- -+ yvmn), € = (€111, - ,EINT, " ,EMNT),
iy and it are vectors of ones of dimension N and T', Ips and Iy are identity ma-
trices of dimension M and N respectively, and ® denotes the Kronecker product.

Under these assumptions, the disturbance covariance matrix E(uu') can be
written as

Q = 2(IM®IN®JIr)+0i(IM®IN®Jr) +0l(In @ IN®V)
= Iy® [aﬁ(JN ® Jr) + oIy ® Jr) + o2 (In ® V)] (5)
where 02 = 02/(1 — p?), Iy = intly and Jp = ipip are square matrices of
dimension N and T with all elements to be 1 respectively, and V is the AR(1)
correlation matrix of order 7"

1 p p2 pT—l
1 T—2
V= ’.) . F.) g (6)
pT—l pT-—Z pT—3 1
It is well established that
[ Q-p)Y2 0 ... 0 0 0]
—-p 1 0 0 0
C= : P Do (7)
0 0 -+ —p 1 0
i 0 0 -~ 0 —-p 1]

transform the usual AR(1) model into a serially uncorrelated regression with
independent observations. One can transform the model (3) by premultiplying it
by (Ipr ® Iy ® C). The transformed regression disturbances are given in vector
form

u* = (Iy®In®Clu
= (Iy@INQCiT)p+ (I @INCir)v+ (I @IN®Cle.  (8)

Using the fact that Cir = (1 — p)i$, where i& = (a,{_,), one can rewrite (8)
as

W=1-p)IMQ@INQiT)p+ (1 —p) I ®IN®iF)v + (Ipy ® IN® Cle. (9)
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Therefore, the covariance matrix of transformed disturbances is

Q2 = E(u'u)
= Iwe {1~ 0oy ® JF) + (1~ )ol(In @ Jf) + o2(Iy © In)},
(10)

since (Iny ® IN® C) E(ee’) (Im @ In ® C') = 02(Iny ® Iy ® IT). Alternatively,
this can be rewritten as

O = Iye® {(Nd2(1 — p)%02)(In ® J)

+(@(1-pPo)In @ Jf) +oX(Iv e Ir)},  (11)

where d? = i$1i$ = o 4+ (T —1). This replaces : TiF! by its idempotent coun-
terpart j% = L'E}é%//dz and Jy = inily/N. Replacing Iy by Ex + Jy and Iy by
Eg + j%, where Ey = Iy — Jy and Ef = I — j% and collecting terms with
the same matrices (Wansbeek and Kapteyn, (1982, 1983)), one gets the spectral
decomposition of Q* :

O = MQ1 + A2Q2 + X3Qs3, (12)
where \; = Nd?(1 — p)zaf, + d* (1 — p)?02 + 02, Ay = d?(1 ~ p)%02 + 02 and
A3 = o2. Correspondingly, Q; = Ipy ® Jy ® JT, Qr=Iy® EN ® J& and
Q3 = Iy ® Iy ® EF, respectively. The )\; are the distinct characteristic roots of
* of multiplicity M, M(N — 1) and MN(T — 1), respectively, and each Q; is
symmetric idempotent and its rank is equal to its trace. Moreover, the Q;’s are
pairwise orthogonal and sum to the identity matrix. Therefore, 2* is obtained
by

QY = MNQ1 + XQ2 + XQs, (13)

where p is any arbitrary scalar. p = —1 obtains the inverse, while p = —— obtains
Q12 Q= E(uu ) is related to Q* by Q* = (I @ IN®C) Q (Ing ®IN®C’) and
IOl = V1= p?, [IM®IN®C| = |C|IMN and || = (A)M (Ag)MIN=1) (\)MN(T-1),
Therefore, the log likelihood function can be written as :

1
L(B, 02, a ,02.p) = const.+ EMNlog(l - - %MN(T ~ 1) log o2
1 1 ;
—5Mlog(M1) - 5M(N - 1)log(X2) — u* Q" ly* (14)

where A; and X, are given by (12), and Q* ! is given by (13).
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3. LM TESTS

3.1. A joint LM test for Hy:02=0,0, =0and p=0

Let us first consider the joint hypothesis Hy : aﬁ =0,02=0and p =
0. Following Breusch and Pagan(1980), we let 6 = (ag,az,og,p)’. Since the
information matrix will be block diagonal between the 6 and 8 parameters, the
part of the information matrix corresponding to 8 will be ignored in computing
the LM statistic, see equation (7) of Breusch and Pagan(1980, p. 241).

LM = D{Jj; Dy, (15)

where D; = (0L/88)(0) is a 4 x 1 vector of partial derivatives of the likelihood
function with respect to each element of §, evaluated at the restricted m.l.e. 8.
Ji1 = E[-0%°L/8680'] is the part of the information matrix corresponding to
6, and Ji; is Ji; when the null hypothesis is true, evaluated at the restricted
m.le. 6. Under the null hypothesis, the variance-covariance matrix reduces to
QO = Q = o2InT and the restricted m.le. of 8 is BOLS, so that 4 = y—X’BOLS
are the OLS residuals and 62 = @#'4/MNT. Hemmerle and Hartly(1973) give a
useful general formula to obtain D :

0L/ 36, = —%tr[n—l(an/ao,)] + %[u'a-l(aa/ao,)n*lu], (16)

forr =1,---,4. Using the formula of Hemmerle and Hartly(1973), we obtain

_Qé_ -0 oL _ MNT('&'(IM®JN®JT)'& 1)

802 ' B0 202 '

oL MNT(’&’(IM®IN®JT)’& B 1)

do2 202 @'l

OL  MNT (i'(Iy ® In ® G)ib\ Wiy

dp 2 ( ' )“MNT W (17)

where (G is the bidiagonal matrix of order T’

[0 1 00 00
1010 0 0
G=|: 1 i :
0000 --- 01
(0000 -+ 1 0]
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M N T
and @'4_; = }: Z Z Ujjthije—1.
i=1 j=1 t=2
Therefore, the partial derivatives with respect to each element of 6, evaluated at

the restricted m.l.e. is given by

[ 0

MNT(’&'(IM ® Jy ® Jr)u _ 1)

252 @a
D, = 18
! MNT (a'(IM ® Iy ® Jr)i 1) (18)
252 5
~,~
MNTZZZE
- u u -

The information matrix for this model using the formula of Harville(1977) is

1 1 1 0
. MNT|1 NT T A5
Ju = 251 ] T T 2(TT—125_2 (19)
0 2(7;:1) &g 2(1;:1) 5? 2(T1—1—1)5_g
with
51 254 _
" MNTT - 1)(T - 2)(N — 1)
[ (N - 1)T(T? - 2T - 1)) 0 ~TN-1) DT
0 (T—-1)(T-1) —(T-1)(T-2) 0
~T2?(N —1) —(T-1)(T-2) (NT2-3T+2) -T0-D
T2(N-1 T?N-1 T?(N-1
L Ja_l 0 R 'AZF,{_Z J
(20)

Therefore the joint LM test statistic for Ho : 0% =0, 62 = 0 and p = 0 is given
by

MNT?
(T — 1T - 2)

_ MN g, \
LM—Q(N_1)<A 2AB+B)+2

(32 —4BC+2T02), (21)
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_y 5 _ 3 .
where A = = L ®a{1y 8 Jr)u -1,B= AL ®~I,IY ® Jr)i —1land C= u;{—‘l

It is asymptotically gllistributed as X2 when thg Zull hypothesis is true(Engle,
1984). This joint LM test requires only OLS residuals and is easy to compute.
It is noted that, if p = 0 and one is testing Hy : az = 0 and aﬁ = (), then
the same derivation is applied except § = (02,0%,02)’ and we ignore the fourth
element of D; in (18) and the fourth row and column of Jy; in (19). In this case,

the joint LM statistic reverts to

MN
2N — 1)

NT -1
T-1

LM, = (A2 —2AB + B?). (22)
Similarly, if o2 = 0 and one is testing Hy : aﬁ =0and p =0, then § = (02, UZ, p)
and we ignore the third element of D; in(18) and the third row and column of

Ji1 in (19). In this case, the LM statistic becomes

NT?

LMz = s =y —2)

(A% — 4AC +2TC?), (23)

reported in Baltagi and Li(1991). The LM statistic for the joint test Hy: p = 0,
crf‘ = 0 and o2 = 0 given in (21), involves an interaction term (24B, 4BC) in
addition to the familiar A%, B2 and C? terms.

3.2. An LM test for p =0 given ¢2 >0 and o2 > 0

Next, we consider the LM test for p = 0 given the existence of random industry
and random nested effects. A similar test is considered by Baltagi and Li(1995)
in one-way error component model with serial correlation . The null hypothesis
for this model is Hy : p = 0 (given ai > 0 and o2 > 0) vs H; : p # 0 (given
oﬁ > 0 and 02 > 0). Under the null hypothesis, we have

_ 1 ., 1 1
(Yo = ;%'Ql + a—%QE + EEQ:?a (24)

where 07 = N Tcrﬁ + To? + 02, 02 = To? + 02 and correspondingly, Q} =
Iy ®Jy® Jr, Q=Iy®@EN® Jr and Q3 = In ® In ® Er, respectively. Using
the formula of Hemmerle and Hartly(1973),

oL oL oL

do? - do? ~ 902 =0
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oL _ _M(T—-l)[N__gj (N—l)‘g]

=3 2
T 07 03

——éﬂ’{IM ® [(‘—%(JN ® Jr) + ~2(EN ® Jr)

+51-2-(IN ® ET)) (IN ® G) (&—%(JN ® Jr) + %(EN ® Jr) + _Z“(IN ® ET))] }u

where 62 = @/ (Iny®IN®Er)a/MN(T—-1), 62 = i (IM®jN®jT)'&/M and 62 =

o' (Iny ® Exy ® J7)4/M (N —1) are the m.le of 02, 0? and o3, respectively, where
% is maximum likelihood residuals under the null hypothesis. G is bidiagonal
matrix with bidiagonal elements all equal to one. Therefore, we have

D= (25)

o O O

D,

Using the the formula of Harville(1977), the information matrix under the null
hypothesis (p = 0) is

A MEE SHERE-S
J, =
| MU M oA+ 5 MGG+ ) T

where J,, = 2M (T — 1)(Na? + 2ab + %) + 2M (2T — 3)(Na + b) + MN(T — 1),

22 2 ~2
_ _03—o0¢ _ _0¢ _1_ _ 1
and ¢ = 753 and b= T ( 2) see Baltagi(1995, p. 225). Thus
the resulting LM test statistic is
o JH M3N3T3(N - 1)(T - 1
LMy = D'J,D = —2—(D,)? = W-UET=Dp,z, )
det(J,) 8det(J,)616552

where det denotes the determinants. Under the null hypothesis, LM3 is asymp-
totically distributed as x?. It is also noted that, if 02 = 0 and one is testing
Hy : p =0 (given a > 0), then 0 = (0? Ous 2 p)' and we ignore the third row and
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column of J,, the LM statistic becomes ((ﬁp)sz”) reported in Baltagi(1995,
p. 92). Further, if p = 0 and one is testing Hy : 02 = 0 (given o2 > 0), then
6 = (02, aﬁ,og)’ and we ignore the fourth row and column of J,. In this case,
the LM statistic becomes

M(N = 1)(NT - 1) (NT —14'(Iy ® En ® Jr)i 1)2_

27
2N(T - 1) N -1 @Iy ® Exr)i (27)

LMy =

4. CONCLUSION

In this paper, we derived the LM test which is jointly testing for the presence
of serial correlation, random individual effects and nested effects, and the LM
test for p = 0 given the existence of random industry and random nested effects.
These joint and conditional LM tests are attractive competitor to the LR and
the Wald tests because it requires only the OLS residuals. The resulting tests are
useful for specification of the serially correlated nested error component model.
Some empirical panel data are given by Montemarquette and Mahseredjian(1989)
and Antweiler(2001).
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