• 제목/요약/키워드: Statistic signal process

검색결과 12건 처리시간 0.021초

호텔링 T2의 이상신호 원인 식별 (Identification of the out-of-control variable based on Hotelling's T2 statistic)

  • 이성임
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.811-823
    • /
    • 2018
  • 호텔링 $T^2$ 통계량에 근거한 다변량 관리도는 공정의 이상상태를 식별하는 통계적 공정관리의 강력한 도구 중 하나이다. 다수의 품질 특성치를 동시에 모니터링하는데 사용된다. $T^2$ 관리도를 통해 이상신호가 탐지된다는 것은 평균 벡터의 변화가 있다는 것을 의미하게 된다. 그러나, 이러한 다변량 통계량의 신호는 이상신호에 대한 원인을 식별하기 어렵게 한다. 이 논문에서는 $T^2$ 통계량을 서로 독립인 항으로 분해한 Mason, Young, Tracy (MYT) 분해에 기반한 원인 식별 방법들을 살펴본다. 또한, R 소프트웨어를 사용하여 사례분석을 하고, 모의실험을 통해 각 절차의 성능을 비교 평가해보고자 한다.

출력편차의 통계학적 신호처리를 통한 태양광 발전 시스템의 고장 위치 진단 기술 (Fault Location Diagnosis Technique of Photovoltaic Power Systems through Statistic Signal Process of its Output Power Deviation)

  • 조현철
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1545-1550
    • /
    • 2014
  • Fault detection and diagnosis (FDD) of photovoltaic (PV) power systems is one of significant techniques for reducing economic loss due to abnormality occurred in PV modules. This paper presents a new FDD method against PV power systems by using statistical comparison. This comparative approach includes deviation signals between the outputs of two neighboring PV modules. We first define a binary hypothesis testing under such deviation and make use of a generalized likelihood ratio testing (GLRT) theory to derive its FDD algorithm. Additionally, a recursive computational mechanism for our proposed FDD algorithm is presented for improving a computational effectiveness in practice. We carry out a real-time experiment to test reliability of the proposed FDD algorithm by utilizing a lab based PV test-bed system.

Multivariate EWMA Control Chart for Means of Multiple Quality Variableswith Two Sampling Intervals

  • Chang, Duk-Joon;Heo, Sunyeong
    • 통합자연과학논문집
    • /
    • 제5권3호
    • /
    • pp.151-156
    • /
    • 2012
  • Because of the equivalence between control chart procedures and hypothesis testing, we propose to use likelihood ratio test (LRT) statistic $Z_i^2$ as the multivariate control statistic for simultaneous monitoring means of the multivariate normal process. Properties and comparisons of the proposed control charts are explored and conducted for matched fixed sampling interval (FSI) and variable sampling interval (VSI) with two sampling interval charts. The result of numerical comparisons shows that EWMA chart with two sampling interval procedure is more efficient than the corresponding FSI chart for small or moderate changes. When large shift of the process has occurred, we also found that Shewhart chart is more efficient than EWMA chart.

가변 샘플링 간격(VSI)을 갖는 적응형 이동평균 (A-MA) 관리도 (An Adaptive Moving Average (A-MA) Control Chart with Variable Sampling Intervals (VSI))

  • 임태진
    • 대한산업공학회지
    • /
    • 제33권4호
    • /
    • pp.457-468
    • /
    • 2007
  • This paper proposes an adaptive moving average (A-MA) control chart with variable sampling intervals (VSI) for detecting shifts in the process mean. The basic idea of the VSI A-MA chart is to adjust sampling intervals as well as to accumulate previous samples selectively in order to increase the sensitivity. The VSI A-MA chart employs a threshold limit to determine whether or not to increase sampling rate as well as to accumulate previous samples. If a standardized control statistic falls outside the threshold limit, the next sample is taken with higher sampling rate and is accumulated to calculate the next control statistic. If the control statistic falls within the threshold limit, the next sample is taken with lower sampling rate and only the sample is used to get the control statistic. The VSI A-MA chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L-consecutive control statistics fall outside the threshold limit. The control length L is introduced to prevent small mean shifts from being undetected for a long period. A Markov chain model is employed to investigate the VSI A-MA sampling process. Formulae related to the steady state average time-to signal (ATS) for an in-control state and out-of-control state are derived in closed forms. A statistical design procedure for the VSI A-MA chart is proposed. Comparative studies show that the proposed VSI A-MA chart is uniformly superior to the adaptive Cumulative sum (CUSUM) chart and to the Exponentially Weighted Moving Average (EWMA) chart, and is comparable to the variable sampling size (VSS) VSI EWMA chart with respect to the ATS performance.

가변 샘플링 간격(VSI)을 갖는 선택적 누적합 (S-CUSUM) 관리도 (A Selectively Cumulative Sum (S-CUSUM) Control Chart with Variable Sampling Intervals (VSI))

  • 임태진
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.560-570
    • /
    • 2006
  • This paper proposes a selectively cumulative sum (S-CUSUM) control chart with variable sampling intervals (VSI) for detecting shifts in the process mean. The basic idea of the VSI S-CUSUM chart is to adjust sampling intervals and to accumulate previous samples selectively in order to increase the sensitivity. The VSI S-CUSUM chart employs a threshold limit to determine whether to increase sampling rate as well as to accumulate previous samples or not. If a standardized control statistic falls outside the threshold limit, the next sample is taken with higher sampling rate and is accumulated to calculate the next control statistic. If the control statistic falls within the threshold limit, the next sample is taken with lower sampling rate and only the sample is used to get the control statistic. The VSI S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L-consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain model is employed to describe the VSI S-CUSUM sampling process. Some useful formulae related to the steady state average time-to signal (ATS) for an in-control state and out-of-control state are derived in closed forms. A statistical design procedure for the VSI S-CUSUM chart is proposed. Comparative studies show that the proposed VSI S-CUSUM chart is uniformly superior to the VSI CUSUM chart or to the Exponentially Weighted Moving Average (EWMA) chart with respect to the ATS performance.

  • PDF

선택적 누적합(S-CUSUM) 관리도 (A Selectively Cumulative Sum(S-CUSUM) Control Chart)

  • 임태진
    • 품질경영학회지
    • /
    • 제33권3호
    • /
    • pp.126-134
    • /
    • 2005
  • This paper proposes a selectively cumulative sum(S-CUSUM) control chart for detecting shifts in the process mean. The basic idea of the S-CUSUM chart is to accumulate previous samples selectively in order to increase the sensitivity. The S-CUSUM chart employs a threshold limit to determine whether to accumulate previous samples or not. Consecutive samples with control statistics out of the threshold limit are to be accumulated to calculate a standardized control statistic. If the control statistic falls within the threshold limit, only the next sample is to be used. During the whole sampling process, the S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L -consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain approach is employed to describe the S-CUSUM sampling process. Formulae for the steady state probabilities and the Average Run Length(ARL) during an in-control state are derived in closed forms. Some properties useful for designing statistical parameters are also derived and a statistical design procedure for the S-CUSUM chart is proposed. Comparative studies show that the proposed S-CUSUM chart is uniformly superior to the CUSUM chart or the Exponentially Weighted Moving Average(EWMA) chart with respect to the ARL performance.

Cumulative Sum Control Charts for Simultaneously Monitoring Means and Variances of Multiple Quality Variables

  • Chang, Duk-Joon;Heo, Sunyeong
    • 통합자연과학논문집
    • /
    • 제5권4호
    • /
    • pp.246-252
    • /
    • 2012
  • Multivariate cumulative sum (CUSUM) control charts for simultaneously monitoring both means and variances under multivariate normal process are investigated. Performances of multivariate CUSUM schemes are evaluated for matched fixed sampling interval (FSI) and variable sampling interval (VSI) features in terms of average time to signal (ATS), average number of samples to signal (ANSS). Multivariate Shewhart charts are also considered to compare the properties of multivariate CUSUM charts. Numerical results show that presented CUSUM charts are more efficient than the corresponding Shewhart chart for small or moderate shifts and VSI feature with two sampling intervals is more efficient than FSI feature. When small changes in the production process have occurred, CUSUM chart with small reference values will be recommended in terms of the time to signal.

Comparison of EWMA and CUSUM Charts with Variable Sampling Intervals for Monitoring Variance-Covariance Matrix

  • Chang, Duk-Joon
    • 통합자연과학논문집
    • /
    • 제13권4호
    • /
    • pp.152-157
    • /
    • 2020
  • To monitor all elements simultaneously of variance-covariance matrix Σ of several correlated quality characteristics under multivariate normal process Np($\underline{\mu}$, Σ), multivariate exponentially weighted moving average (EWMA) chart and cumulative sum (CUSUM) chart are considered and compared. Numerical performances of the considered variable sampling interval (VSI) charts are evaluated using average run length (ARL), average time to signal (ATS), average number of switches (ANSW) to signal, and the probability of switch Pr(switch) between two sampling interval d1 and d2 where d1 < d2. For small or moderate changes of Σ, the performances of multivariate EWMA chart is approximately equivalent to that of multivariate CUSUM chart.

Numerical Switching Performances of Cumulative Sum Chart for Dispersion Matrix

  • Chang, Duk-Joon
    • 통합자연과학논문집
    • /
    • 제12권3호
    • /
    • pp.78-84
    • /
    • 2019
  • In many cases, the quality of a product is determined by several correlated quality variables. Control charts have been used for a long time widely to control the production process and to quickly detect the assignable causes that may produce any deterioration in the quality of a product. Numerical switching performances of multivariate cumulative sum control chart for simultaneous monitoring all components in the dispersion matrix ${\Sigma}$ under multivariate normal process $N_p({\underline{\mu}},{\Sigma})$ are considered. Numerical performances were evaluated for various shifts of the values of variances and/or correlation coefficients in ${\Sigma}$. Our computational results show that if one wants to quick detect the small shifts in a process, CUSUM control chart with small reference value k is more efficient than large k in terms of average run length (ARL), average time to signal (ATS), average number of switches (ANSW).

특징 추출과 검출 오차 최소화 알고리듬을 이용한 회전기계의 결함 진단 (Fault Diagnosis for Rotating Machine Using Feature Extraction and Minimum Detection Error Algorithm)

  • 정의필;조상진;이재열
    • 한국소음진동공학회논문집
    • /
    • 제16권1호
    • /
    • pp.27-33
    • /
    • 2006
  • Fault diagnosis and condition monitoring for rotating machines are important for efficiency and accident prevention. The process of fault diagnosis is to extract the feature of signals and to classify each state. Conventionally, fault diagnosis has been developed by combining signal processing techniques for spectral analysis and pattern recognition, however these methods are not able to diagnose correctly for certain rotating machines and some faulty phenomena. In this paper, we add a minimum detection error algorithm to the previous method to reduce detection error rate. Vibration signals of the induction motor are measured and divided into subband signals. Each subband signal is processed to obtain the RMS, standard deviation and the statistic data for constructing the feature extraction vectors. We make a study of the fault diagnosis system that the feature extraction vectors are applied to K-means clustering algorithm and minimum detection error algorithm.