• 제목/요약/키워드: Static inverter

검색결과 159건 처리시간 0.044초

멀티레벨 PWM 인버터/정류기의 모델링 (Modeling of Multilevel PWM Inverter/Rectifier)

  • 최남섭;조규형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1119-1122
    • /
    • 1992
  • This paper deals with a novel method of modeling and analyzing multilevel pulse width modulation(PWM) inverter/rectifier, which leads to extraction of equivalent circuit in fundamental frequency domain. By the technique, we can draw out the corresponding linear time invariant circuit even thuogh the actual circuit is switched. A static VAR compensator using five-level inverter is modeled and simulated for the verification of the modeling.

  • PDF

PAM 인버터를 이용한 무효전력보상장치의 고조파 저감에 관한 연구 (A Study on The Reducing Harmonics of Static Var Compensator using PAM Inverter)

  • 박현철;김영민;황종선;김종만
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.1103-1106
    • /
    • 2002
  • This paper presents SVC which use PAM method and eliminate harmonics. Inverter is connected directly so that SVC improve output voltage waveform into 24 steps. Inverter output waveform THD is reduced to 6.89%. Leading control of reactive power generated in power system is possible. Snubber is added to reduce switching loss.

  • PDF

멀티레벨 인버터를 이용한 무효전력 보상장치에서의 DC-Link 전압 불평형 보상 (DC-Link Voltage Unbalance Compensation of Reactive Power Compensator using Multi-level Inverter)

  • 김효진;정승기
    • 전력전자학회논문지
    • /
    • 제18권5호
    • /
    • pp.422-428
    • /
    • 2013
  • Recently, we use a static synchronous compensator(STATCOM) with cascaded H-bride topologies, because it is easy to increase capacity and to reduce total harmonic distortion(THD). When we use equipment for reactive power compensation, dc-link voltage unbalances occur from several reasons although loads are balanced. In the past, switching pattern change of single phase inverter and reference voltage magnitude change of inverter equipped with power sensor have been used for dc-link voltage balance. But previous methods are more complicated and expensive because of additional component costs. Therefore, this paper explains reasons of dc-link voltage unbalance and proposes solution. This solution is complex method that is composed of reference voltage magnitude change of inverter without additional hardware and shifted phase angle of inverter reference voltages change. It proves possibility through 1000[KVA] system simulation.

유도전동기 구동을 위한 전류형 PWM 컨버터 및 인버터 시스템 (PWM current source converter and inverter system for induction motor drives)

  • 이동춘
    • 전자공학회논문지B
    • /
    • 제33B권5호
    • /
    • pp.159-164
    • /
    • 1996
  • In this paper, a novel control strategy of curretn source PWM converter and inverter system for induction motor dirves is proposed. The PWM converter controls line current to be sinusoidal and makes input power factor unity. In the inverter part, a minor voltage control loop is incorporated in the current control looop in order to suppress unstale resonance between the filter capacitor and the motor leakage inductance and to keep the stator voltage under the rated value. In additon, the modulation index control of the inverter currents ripples and inverter loss. With the proposed algorithm, both high dynamic responses and satisfactory static performance can be obtained.

  • PDF

전동차용 IGBT형 190kVA 보조전원장치 개발 (The Development of IGBT Type 190kVA Static Inverter for Electric Car)

  • 김종규;박건태;정기찬;김두식;서광덕
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.634-637
    • /
    • 1997
  • This paper is on the research and development of new SIV(Static Inverter) using IGBT(Insulated Gate Bipolar Transistor) semiconductor for a wide range of electric railway applications. For the simplification and higher controllability, the direct PWM control method with 3level inverter topology was adopted. In the new SIV system, the cost as well as bulk and weight was appreciably reduced about 40% lower than those of conventional SIV, the electrical efficiency was increased above 95% and the audible noise level was less than 65dB. In addition, the THD(Total Harmonic Distortion) factor was below 5% and the voltage fluctuation on a transient state was below 10%.

  • PDF

Dynamic Characteristic Analysis of SSSC based on Multi-bridge PWM Inverter

  • Han Byung-Moon;Kim Hee-Joong;Baek Seung-Taek
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.718-722
    • /
    • 2001
  • This paper proposes an SSSC based on multi-bridge inverters in PWM scheme. The proposed system consists of 6 H-bridge inverter modules per phase. The dynamic characteristic of proposed system was analyzed by simulation with EMTP codes, assuming that the SSSC is inserted in the 154-kV transmission line of one-machine-infinite-bus power system. The feasibility of hardware implementation was verified through experimental works with a scaled-model. The proposed system can be directly inserted in the transmission line without coupling transformers, and has flexibility in expanding the operation voltage by increasing the number of H-bridges.

  • PDF

GTO 인버터를 사용한 무효전력 보상기의 개발 (Development of Static VAR Compensator Using GTO Inverter)

  • 최남섭;조국춘;정구호;조규형;홍순욱;차재덕;김송응
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.406-408
    • /
    • 1994
  • A static VAR compensator using 100kVA three-level GTO voltage source inverter is presented for high voltage/high power applications. The phase angle of the invertor is controlled so as to compensate the reactive power of some load. The paper deals with the following topics; system description, circuit DQ modelling, main controller, power circuit.

  • PDF

2상 풀브릿지 인버터의 정적 과변조 기법 (Static Overmodulation Strategies of Two Phase Full Bridge Inverter)

  • 최승철;김영기;김상훈;김형철;목형수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.45-46
    • /
    • 2010
  • In this paper, the static overmodulation is proposed for the 2-phase full bridge inverter. The overmodulation strategy increases a fundamental output voltage and improves a voltage utilization up to the maximum in the overmodulation range. To maintain a linearity of the relation between a reference voltage and a fundamental output voltage, this paper suggests a compensation voltage, whose magnitude or phase is modified to the proposed control scheme. Simulation and experimentation results demonstrate the effectiveness of the proposed algorithms.

  • PDF

자려식 SVC용 5레벨 인버터의 직류측 콘덴서 전압제어에 관한 연구 (A study on the DC Capacitor Voltage control of 5 Level Inverter for Static Var Compensator)

  • 김종윤;;류승각;오진석;김윤식;노창주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.1899-1901
    • /
    • 1998
  • A five-level VSI(Voltage Source Inverter) is introduced as a SVC(Static Var Compensator) like a large scale power source. The problems in using SVC are that the power device can easily be destroyed by voltage unbalance and accurate reactive power control is difficult because of voltage variation. A asymmetrical PAM(Pulse Amplitude Modulation) switching pattern is proposed to solve this problem and analyze both fundamental component and harmonic current in the system. Through experimental results of 3.5 kVA experimental test system. It is confirmed that DC capacitor voltage can be controlled by asymmetrical PAM switching pattern control.

  • PDF

자려식 SVC용 5레벨 인버터의 직류측 콘덴서 전압제어에 관한 연구 (A study on the DC Capacitor Voltage control of 5 Level Inverter for Static Var Compensator)

  • 김종윤;오진석;공관식
    • 한국정보통신학회논문지
    • /
    • 제3권1호
    • /
    • pp.223-228
    • /
    • 1999
  • A five-level VSI(Voltage Source Inverter) is introduced as a SVC(Static Vu Compensator) like a large scale power source. The problems in using SVC are that the power device can easily be destroyed by voltage unbalance and accurate reactive power control is difficult because of voltage variation. A asymmetrical PAM(Pulse Amplitude Modulation) switching pattern is proposed to solve this problem and analyze both fundamental component and harmonic current in the system. Through experimental results of 3.5 kVA experimental test system, It is confirmed that DC capacitor voltage can be controlled by asymmetrical PAM switching pattern control.

  • PDF