• Title/Summary/Keyword: State-space Observer

Search Result 73, Processing Time 0.026 seconds

Modeling of flexible stick balencer and controller design (Flexible stick balencer에 대한 modeling과 제어에 관한 연구)

  • Seo, Ki-Won;Cho, Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.233-236
    • /
    • 1996
  • This paper describes a liner state-space model for a flexible stick balencer. The method employed to generate the model utilizes a separable formulation of assumed modes to represents the transverse displacement due to bending Lagrangian dynamics are applied to determine the kinetic and potential energies for the system. The resultant dynamic equations are then organized into a state space model and linearized using Taylor series expansion method. A minimum order observer is designed to estimate unmeasurable states.

  • PDF

Real Time Estimation in 1-Dimensional Temperature Distribution Using Modal Analysis and Observer (모드해석과 관측기를 이용한 1차원 온도분포의 실시간 예측)

  • An, Jung-Yong;Park, Yeong-Min;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.195-201
    • /
    • 2001
  • An inverse heat conduction problem(IHCP) arises when unknown heat fluxes and whole temperature field are to be found with temperature measurements of a few points. In this paper, observers are proposed as solution algorithm for the IHCP. A 1-dimensional heat transfer problem is modeled with modal analysis and state space equations. Position of the heat source is estimated through test heat inputs and the autocorrelation among a few of temperature data. The modified Bass-Gura method is used to design a state observer to estimate the intensity of heat source and the whole temperature field of a 1-dimensional body. To verify the reliability of this estimator, analytic solutions obtained from the proposed method are compared.

Real-time estimation of Temperature Distribution of a Ball Screw System Using Modal Analysis and Observer (모드해석과 관측기에 의한 볼스크류 온도분포의 실시간 예측)

  • 김태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.635-640
    • /
    • 2000
  • Thermal deformation of machine tools can be evaluated from the analysis of the whole temperature field. However, it is extremely inefficient and impossible to acquire the whole temperature field by measuring temperatures of every point. So, a temperature estimator, which can estimate the whole temperature field from the temperatures of just a few points, is required. In this paper, 1-dimensional heat transfer problem is modeled with modal analysis and state space equations. and then state observer is designed to estimate the intensity of heat source and the whole temperature field in real-time. The reliability of this estimator is verified by making a comparison between solutions by the proposed method and the exact solutions of examples. The proposed method is applied to the estimation of temperature distribution in a ball screw system.

  • PDF

fictive Noise Control of Enclosed Sound Field Using LQR Controller (LQR 제어기를 이용한 밀폐음장의 능동소음제어)

  • 유우열;김우영;황원걸;이유엽
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.12-20
    • /
    • 2002
  • To control the noise of an enclosed sound field, we built a state space model using the acoustic modal parameter description. Using the state space model, we can investigate the controllability and observability, and find an appropriate position of control speaker and microphone to control sound field of the enclosed space. We implemented LQR(linear quadratic regulator) controller and reduced order observer to reduce the first acoustic mode. Experiments showed satisfactory results of 4∼10 dB reduction of magnitude of the first acoustic mode, and support the feasibility of the proposed scheme to lightly damped acoustic field.

Sensorless Operation of DC Motors Using State Observers and Compensators (상태 관측기 및 보상기를 이용한 전동기의 센서리스 운전)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Yang, Chan-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.366-370
    • /
    • 1990
  • Generally, when servo system is used, various sensors are required to have comparison and compensation to the reference value. However, the sensors are relatively expensive, and cannot be always implemented because of the limit of space or the environmental conditions. In this paper, state observer systems without sensors are investigated. State observer systems are required to estimate the states quickly and exactly without being affected by the disturbances. Thus, in this paper, the effects of systems poles and observer poles are studies. In addition, the parameter variations are also considered to evaluate the effect of them to the observer based systems. Also, in this paper a whole system which includes compensators, observers and loads are considered and analysed by using numerical simulations.

  • PDF

Design of a Fuzzy Model-Based State Observer Using GAs (유전알고리즘에 의한 퍼지모델기반의 상태관측기 설계)

  • 이현식;손영득;김종화;유영호;하윤수;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.162-170
    • /
    • 2001
  • This paper presents a scheme for designing a fuzzy model-bsaed state observer for nonlinear system. For this scheme, a Tagaki-Sugeno type fuzzy model whose consequent part is of the state space form is obtained. In describes the locally linear input/output relationship of a system. The parameters of the fuzzy model are adjusted using a genetic algorithm. Then. fuzzy full-order and reduced-order state observers are designed based on the fuzzy model. A set of simulation works is carried out to demonstrate the effectiveness of the proposed scheme.

  • PDF

Steady State and Dynamic Response of a State Space Observer Based PMSM Drive with Different Controllers

  • Gaur, Prerna;Singh, Bhim;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.280-290
    • /
    • 2008
  • This paper deals with an investigation and evaluation of the performance of a state observer based Permanent Magnet Synchronous Motor (PMSM) drive controlled by PI (Proportional Integral), PID (Proportional Integral and Derivative), SMC (sliding mode control), ANN (Artificial neural network) and FLC (Fuzzy logic) speed controllers. A detailed study of the steady state and dynamic performance of estimated speed and angle is given to demonstrate the capability of the controllers.

On time-wise approximate nonlinear observer for sampled-data nonlinear systems (샘플링시간에 대한 근사 샘플치 비선형 관측기)

  • 정선태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.28-36
    • /
    • 1996
  • By utilizing the interinsic structure of the underlying continous-time nonlinear system, one can design an approximate sampled-data observer improved with respect ot the sampling-time for the systems. In this paper, we characterize the conditions for the solvability of the improved approximate sampled-data nonlinear observer design problem. In particular, it is shown that when the dimension of the state space is two, the nonlinear systems for which it is possible ot desing 3rd or higher order approximate sampled-data nonlinear observer are locally state-equivalent to an observable bilinear system. The practical implication is that seeking higher order approximate sampled-data nonlinear observer for nonlinear systems is very restricted.

  • PDF

Adaptive Observer Design for Nonlinear Systems Using Generalized Nonlinear Observer Canonical Form

  • Jo, Nam-Hoon;Son, Young-Ik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1150-1158
    • /
    • 2004
  • In this paper, we present an adaptive observer for nonlinear systems that include unknown constant parameters and are not necessarily observable. Sufficient conditions are given for a nonlinear system to be transformed by state-space change of coordinates into an adaptive observer canonical form. Once a nonlinear system is transformed into the proposed adaptive observer canonical form, an adaptive observer can be designed under the assumption that a certain system is strictly positive real. An illustrative example is included to show the effectiveness of the proposed method.

Robust Observer Design for Multi-Output Systems Using Eigenstructure Assignment (고유구조 지정을 이용한 다중출력 시스템의 강인한 관측기 설계)

  • Huh, Kun-Soo;Nam, Joon-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1621-1628
    • /
    • 2004
  • This paper proposes a design methodology for the robust observer using the eigenstructure assignment in multi-output systems so that the observer is less sensitive to the ill-conditioning factors such as unknown initial estimation error, modeling error and measurement bias in transient and steady-state observer performance. The robustness of the observer can be achieved by selecting the desired eigenvector matrix to have a small condition number that guarantees the small upper bound of the estimation error. So the left singular vectors of the unitary matrix spanned by space of the achievable eigenvectors are selected as a desired eigenvectors. Also, this paper proposes how to select the desired eigenvector based on the measure of observability and designs the observer with small gain. An example of a spindle drive system is simulated to validate the robustness to the ill-conditioning factors in the observer performance.