• Title/Summary/Keyword: Starlike functions

Search Result 177, Processing Time 0.02 seconds

MEROMOR0PHIC UNIVALENT HARMONIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

  • Jahangiri, Jay M.;Silverman, Herb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.763-770
    • /
    • 1999
  • The purpose of this paper is to give sufficient coefficient conditions for a class of univalent harmonic functions that map each $$\mid$z$\mid$$ = r >1 onto a curve that bounds a domain that is starlike with respect to origin. Furthermore, it is shown that these conditions are also necessary when the coefficients are negative. Extreme points for these classes are also determined. Finally, comparable results are given for the convex analgo.

  • PDF

SOME INCLUSION RELATIONS OF CERTAIN SUBCLASSES OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH GENERALIZED DISTRIBUTION SERIES

  • Magesh, Nanjundan;Porwal, Saurabh;Themangani, Rajavadivelu
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.843-854
    • /
    • 2020
  • The purpose of this present paper is to obtain inclusion relations between various subclasses of harmonic univalent functions by using the convolution operator associated with generalized distribution series. To be more precise, we obtain such inclusions with harmonic starlike and harmonic convex mappings in the plane.

ON CERTAIN SUBCLASSES OF STARLIKE FUNCTIONS

  • Kwon, Oh-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.305-315
    • /
    • 1995
  • The class $R_{\gamma-1,p}(A,B,\alpha)$ for $-1 \leq B < A \leq 1,\gamma > (B -1)p+(A_B)(p-\alpha)/1-B$ and $0 \leq \alpha < p$ consisting of p-valently analytic functions in the open unit disc is defined with the help of convolution technique. We study containment property, integral transforms and a sufficient condition for an analytic function to be in $R_{\gamma-1,p}(A,B,\alpha)$.

  • PDF

COEFFICIENT ESTIMATES FOR FUNCTIONS ASSOCIATED WITH VERTICAL STRIP DOMAIN

  • Bulut, Serap
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.537-549
    • /
    • 2022
  • In this paper, we consider a convex univalent function fα,β which maps the open unit disc 𝕌 onto the vertical strip domain Ωα,β = {w ∈ ℂ : α < ℜ < (w) < β} and introduce new subclasses of both close-to-convex and bi-close-to-convex functions with respect to an odd starlike function associated with Ωα,β. Also, we investigate the Fekete-Szegö type coefficient bounds for functions belonging to these classes.

GEOMETRIC PROPERTIES OF STARLIKENESS INVOLVING HYPERBOLIC COSINE FUNCTION

  • Om P. Ahuja;Asena Cetinkaya;Sushil Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.407-420
    • /
    • 2024
  • In this paper, we investigate some geometric properties of starlikeness connected with the hyperbolic cosine functions defined in the open unit disk. In particular, for the class of such starlike hyperbolic cosine functions, we determine the lower bounds of partial sums, Briot-Bouquet differential subordination associated with Bernardi integral operator, and bounds on some third Hankel determinants containing initial coefficients.

Coefficient Inequality for Transforms of Starlike and Convex Functions with Respect to Symmetric Points

  • KRISHNA, DEEKONDA VAMSHEE;VENKATESWARLU, BOLLINENI;RAMREDDY, THOUTREDDY
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.429-438
    • /
    • 2015
  • The objective of this paper is to obtain sharp upper bound for the second Hankel functional associated with the $k^{th}$ root transform $[f(z^k)]^{\frac{1}{k}}$ of normalized analytic function f(z) when it belongs to the class of starlike and convex functions with respect to symmetric points, defined on the open unit disc in the complex plane, using Toeplitz determinants.

INCLUSION RELATIONS AND RADIUS PROBLEMS FOR A SUBCLASS OF STARLIKE FUNCTIONS

  • Gupta, Prachi;Nagpal, Sumit;Ravichandran, Vaithiyanathan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1147-1180
    • /
    • 2021
  • By considering the polynomial function 𝜙car(z) = 1 + z + z2/2, we define the class 𝓢*car consisting of normalized analytic functions f such that zf'/f is subordinate to 𝜙car in the unit disk. The inclusion relations and various radii constants associated with the class 𝓢*car and its connection with several well-known subclasses of starlike functions is established. As an application, the obtained results are applied to derive the properties of the partial sums and convolution.

A STARLIKENESS CONDITION ASSOCIATED WITH THE RUSCHEWEYH DERIVATIVE

  • Li, Jian-Lin;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2002
  • Some Miller-Mocanu type arguments are used here in order to establish a general starlikeness condition involving the familiar Ruscheweyh derivative. Relevant connections with the various known starlikeness conditions are also indicated. This paper concludes with several remarks and observations in regard especially to the nonsharpness of the main starlike condition presented here.

  • PDF

New Subclasses of Harmonic Starlike and Convex Functions

  • Porwal, Saurabh;Dixit, Kaushal Kishore
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.467-478
    • /
    • 2013
  • The purpose of the present paper is to establish some interesting results involving coefficient conditions, extreme points, distortion bounds and covering theorems for the classes $V_H({\beta})$ and $U_H({\beta})$. Further, various inclusion relations are also obtained for these classes. We also discuss a class preserving integral operator and show that these classes are closed under convolution and convex combinations.

Radii of Starlikeness and Convexity for Analytic Functions with Fixed Second Coefficient Satisfying Certain Coefficient Inequalities

  • MENDIRATTA, RAJNI;NAGPAL, SUMIT;RAVICHANDRAN, V.
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.395-410
    • /
    • 2015
  • For functions $f(z)=z+a_2z^2+a_3z^3+{\cdots}$ with ${\mid}a_2{\mid}=2b$, $b{\geq}0$, sharp radii of starlikeness of order ${\alpha}(0{\leq}{\alpha}<1)$, convexity of order ${\alpha}(0{\leq}{\alpha}<1)$, parabolic starlikeness and uniform convexity are derived when ${\mid}a_n{\mid}{\leq}M/n^2$ or ${\mid}a_n{\mid}{\leq}Mn^2$ (M>0). Radii constants in other instances are also obtained.