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Abstract. The objective of this paper is to obtain sharp upper bound for the second

Hankel functional associated with the kth root transform
[
f(zk)

] 1
k of normalized analytic

function f(z) when it belongs to the class of starlike and convex functions with respect

to symmetric points, defined on the open unit disc in the complex plane, using Toeplitz

determinants.

1. Introduction
Let A denote the class of all functions f(z) of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of
univalent functions. For a univalent function in the class A, it is well known that
the nth coefficient is bounded by n. The geometric properties of these functions
were determined by the study of their coefficient bounds. For example, the bound
for the second coefficient of normalized univalent function readily yields the growth
and distortion properties for univalent functions. The Hankel determinant of f for
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q ≥ 1 and n ≥ 1 was defined by Pommerenke [13] as

Hq(n) =

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

, (a1 = 1).

This determinant has been considered by many authors in the literature. For exam-
ple, Noor [11] determined the rate of growth of Hq(n) as n → ∞ for the functions in
S with bounded boundary. Ehrenborg [5] studied the Hankel determinant of expo-
nential polynomials. In the recent years, several authors have investigated bounds
for the Hankel determinant of functions belonging to various subclasses of univalent
and multivalent analytic functions [1, 7, 9, 10, 15]. In particular for q = 2, n = 1
and q = 2, n = 2 when (a1 = 1), the Hankel determinant simplifies respectively to

H2(1) =
a1 a2
a2 a3

= a3 − a22,

and H2(2) =
a2 a3
a3 a4

= a2a4 − a23.

We refer to H2(2) as the second Hankel determinant. It is well known that for the
univalent functions of the form (1.1), the sharp inequality H2(1) = |a3 − a22| ≤ 1
holds true [4]. For a family T of functions in S, the more general problem of finding
sharp estimates for the functional

∣∣a3 − µa22
∣∣ (µ ∈ R or µ ∈ C), popularly known

as the Fekete-Szegö problem for T. Ali [3] found sharp bounds for the first four
coefficients and sharp estimate for the Fekete-Szegö functional |γ3 − tγ2

2 |, where
t is real for the inverse function of f (given in (1.1)), defined as f−1(w) = w +∑∞

n=2 γnw
n when f−1 ∈ S̃T (α) (0 < α ≤ 1), the class of strongly starlike functions

of order α. Recently, R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam
[2] have obtained sharp bounds for the Fekete-Szegö functional denoted by |b2k+1−
µb2k+1| associated with the kth root transform

[
f(zk)

] 1
k of the function given in (1.1)

when it belongs to certain subclasses of S. The kth root transform for the function
f given in (1.1) is defined as

(1.2) F (z) :=
[
f(zk)

] 1
k = z +

∞∑
n=1

bkn+1z
kn+1.

Motivated by the results obtained by R. M. Ali, S. K. Lee, V. Ravichandran
and S. Supramaniam [2], in the present paper, we obtain sharp upper bound to
the second Hankel determinant denoted by |bk+1b3k+1 − b22k+1| for the kth root
transform for the function f when it belongs to the subclasses namely starlike and
convex functions with respect to symmetric points respectively denoted by STs and
CVs of S, defined as follows.
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Definition 1.1. A function f(z) ∈ A is said to be in STs, if it satisfies the condition

(1.3) Re

{
2zf ′(z)

f(z)− f(−z)

}
> 0, ∀z ∈ E.

The class STs was introduced and studied by Sakaguchi [17]. The concept of
starlike functions with respect to symmetric points have been extended to starlike
functions with respect to N -symmetric points by Ratanchand [16] and Prithvipal
Singh [14].

Definition 1.2. A function f(z) ∈ A is said to be in CVs, if it satisfies the condition

(1.4) Re

{
2 {zf ′(z)}′

zf ′(z) + zf ′(−z)

}
> 0, ∀z ∈ E.

Some preliminary Lemmas required for proving our results are as follows:

2. Preliminary Results

Let P denote the class of functions consisting of p, such that

(2.1) p(z) = 1 + c1z + c2z
2 + c3z

3 + ... = 1 +
∞∑

n=1

cnz
n,

which are regular in the open unit disc E and satisfy Rep(z) > 0, for any z ∈ E.
Here p(z) is called the Carathéodory function [4].

Lemma 2.1.([12],[18]) If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the inequality
is sharp for the function 1+z

1−z .

Lemma 2.2.([6]) The power series for p given in (2.1) converges in the open unit
disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3....

and c−k = ck, are all non-negative. They are strictly positive except for p(z) =∑m
k=1 ρkp0(exp(itk)z), ρk > 0, tk real and tk ̸= tj, for k ̸= j, where p0(z) =

1+z
1−z ;

in this case Dn > 0 for n < (m− 1) and Dn
.
= 0 for n ≥ m.

This necessary and sufficient condition found in [6] is due to Carathéodory and
Toeplitz. We may assume without restriction that c1 > 0. On using Lemma 2.2,
for n = 2 and n = 3 respectively, we have

D2 =
2 c1 c2
c1 2 c1
c2 c1 2
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On expanding the determinant, we get

D2 = [ 8 + 2Re{c21c2} − 2 | c2 |2 − 4 | c1 |2 ] ≥ 0,

Applying the fundamental principles of complexnumbers, the above expression is
equivalent to

(2.2) 2c2 = c21 + x(4− c21), for some x with |x| ≤ 1.

and D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

.

Then D3 ≥ 0 is equivalent to

(2.3) |(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)
2| ≤ 2(4− c21)

2 − 2|(2c2 − c21)|2.

Simplifying the relations (2.2) and (2.3), we obtain

(2.4) 4c3 = c31 + 2c1(4− c21)x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z

for some z, with |z| ≤ 1.

In obtaining our results, we refer to the classical method devised by Libera and
Zlotkiewicz [8].

3. Main Results

Theorem 3.1. If f given by (1.1) belongs to STs and F is the kth root transfor-
mation of f given by (1.2) then

|bk+1b3k+1 − b22k+1| ≤
1

k2

and the inequality is sharp.

Proof. Let f ∈ STs, it follows from the Definition 1.1 there exists an analytic
function p ∈ P in the open unit disc E with p(0) = 1 and Rep(z) > 0 such that

(3.1)
2zf ′(z)

f(z)− f(−z)
= p(z) ⇔ 2zf ′(z) = {f(z)− f(−z)}p(z).

Replacing f(z), f ′(z) , f(−z) and p(z) with their equivalent series expressions in
(3.1), we have

2z

{
1 +

∞∑
n=2

nanz
n−1

}

=

[{
z +

∞∑
n=2

anz
n

}
−

{
−z +

∞∑
n=2

an(−z)n

}]{
1 +

∞∑
n=1

cnz
n

}
.
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Upon simplification, we obtain

(3.2) 2a2z + 3a3z
2 + 4a4z

3 + ... = c1z + (c2 + a3)z
2 + (c3 + c1a3)z

3 + ....

Equating the coefficients of like powers of z, z2 and z3 respectively on both sides of
the relation (3.2), after simplifying, we get

(3.3) a2 =
c1
2
; a3 =

c2
2
; a4 =

1

8
(2c3 + c1c2).

For the function f given in (1.1), a computation shows that

[
f(zk)

] 1
k =

[
zk +

∞∑
n=2

anz
nk

] 1
k

=
[
z +

1

k
a2z

k+1 +
{1

k
a3 +

1− k

2k2
a22

}
z2k+1

+
{1

k
a4 +

1− k

k2
a2a3 +

(1− k)(1− 2k)

6k3
a32

}
z3k+1 + · · ·

]
.(3.4)

The equations (1.3) and (3.4) yield;

bk+1 =
1

k
a2; b2k+1 =

1

k
a3 +

1− k

2k2
a22;

b3k+1 =
1

k
a4 +

1− k

k2
a2a3 +

(1− k)(1− 2k)

6k3
a32.(3.5)

Simplifying the expressions (3.3) and (3.5), we get

bk+1 =
c1
2k

; b2k+1 =
c2
3k

− k − 1

8k2
c21;

b3k+1 =
c3
4k

− k − 1

6k2
c1c2 +

(k − 1)(2k − 1)

48k3
c31.(3.6)

Substituting the values of bk+1, b2k+1 and b3k+1 from (3.6) in the second Hankel
determinant for the kth− root transformation for the function f ∈ STs, which
simplifies to

(3.7)
∣∣bk+1b3k+1 − b22k+1

∣∣ = 1

192k4

∣∣∣24k2c1c3+12k2c21c2−48k2c22−(1−k)(1+4k)c41

∣∣∣.
From Lemma 2.2, substituting the values of c2 and c3 from (2.2) and (2.4) respec-
tively, on the right-hand side of the expression (3.7), we have∣∣bk+1b3k+1 − b22k+1

∣∣ = ∣∣∣ 24k2c1 × 1

4

{
c31 + 2c1(4− c21)x− c1(4− c21)x

2

+ 2(4− c21)(1− |x|2)z
}
+ 12k2c21 ×

1

2

{
c21 + x(4− c21)

}
− 48k2 × 1

4

{
c21 + x(4− c21)

}2 − (1− k)(1 + 4k)c41

∣∣∣.
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Using the facts |z| < 1 and |pa + qb| ≤ |p||a| + |q||b| where p, q, a and b are real
numbers, after simplifying, we get

(3.8) |bk+1b3k+1 − b22k+1| ≤
∣∣−(1− k)(1 + 4k)c41 + 12k2c1(4− c21)

−6k2c21(4− c21)|x| − 6k2(−c1 + 4)(c1 + 2)(4− c21)|x|2
∣∣ .

Since c1 = c ∈ [0, 2], noting that (−c1 + a)(c1 + b) ≥ (−c1 − a)(c1 − b), where
a, b ≥ 0, provided a ≥ b, applying triangle inequality and replacing |x| by µ on the
right-hand side of (3.8), we obtain

(3.9) |bk+1b3k+1 − b22k+1| ≤
[
(k − 1)(1 + 4k)c4 + 12k2c(4− c2) + 6k2c2(4− c2)µ

+6k2(−c− 4)(c− 2)(4− c2)µ2
]
= F (c, µ), for 0 ≤ µ = |x| ≤ 1,

(3.10) where F (c, µ) = (k − 1)(1 + 4k)c4 + 12k2c(4− c2)

+ 6k2c2(4− c2)µ+ 6k2(−c− 4)(c− 2)(4− c2)µ2.

Next, we maximize the F (c, µ) on the closed region [0, 2] × [0, 1]. Differentiating
F (c, µ) in (3.10) partially with respect to µ, we get

(3.11)
∂F

∂µ
= 6k2

{
c2 + 2(−c− 4)(c− 2)µ

}
(4− c2).

For 0 < µ < 1, for fixed c with 0 < c < 2 and for every k, from (3.11), we observe
that ∂F

∂µ > 0. Therefore, F (c, µ) becomes an increasing function of µ and hence
it cannot have a maximum value at any point in the interior of the closed region
[0, 2]× [0, 1]. Further, for fixed c ∈ [0, 2], we have

(3.12) max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).

Simplifying the relations (3.10) and (3.12), we obtain

(3.13) G(c) = (k − 1)(1 + 4k)c4 − 48k2c2 + 192k2,

(3.14) G′(c) = 4(k − 1)(1 + 4k)c3 − 96k2c.

From the expression (3.14), we observe that G′(c) ≤ 0 for all values of c in the
interval [0, 2] and for every k. Therefore, G(c) is a monotonically decreasing function
of c in the interval [0, 2] and hence its maximum value occurs at c = 0 only, from
(3.13), it is given by

(3.15) max
0≤c≤2

G(0) = 192k2.

From the expressions (3.9) and (3.15), we get

(3.16) |bk+1b3k+1 − b22k+1| ≤ 192k2.
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Simplifying the relations (3.7) and (3.16), we obtain

(3.17) |bk+1b3k+1 − b22k+1| ≤
1

k2
.

By setting c1 = c = 0 and selecting x = 1 in (2.2) and (2.4) , we find c2 = 2
and c3 = 0. Using these values in (3.7), we observe that equality is attained, which
shows that our result is sharp. For these values, we derive the extremal function,
in this case given by

(3.18)
2zf ′(z)

f(z)− f(−z)
= 1 + 2z2 + 2z4 + ... =

1 + z2

1− z2
.

This completes the proof of our Theorem 3.1. 2

Remark. Choosing k = 1, in (3.17) the result coincides with that of RamReddy
and Vamshee Krishna [15].

Theorem 3.2. If f given by (1.1) belongs to CVs and F is the kth root transfor-
mation of f given by (1.2) then

|bk+1b3k+1 − b22k+1| ≤
1

9k2

and the inequality is sharp.
Proof. Let f(z) = z +

∑∞
n=2 anz

n ∈ CVs, by virtue of Definition 1.2, we have

2{zf ′(z)}′

f ′(z) + f ′(−z)
= p(z) ⇔ 2{zf ′(z)}′ = {f ′(z) + f ′(−z)} p(z).

Replacing f ′(z), f ′(−z), f ′′(z) and p(z) with their series equivalent expressions in
(3.18) and applying the same procedure described in Theorem 3.1, we have

(3.19) a2 =
c1
4
; a3 =

c2
6
; a4 =

1

32
(2c3 + c1c2).

From the relations (3.5) and (3.19), a computation shows that

bk+1 =
c1
4k

; b2k+1 =
1

96k2
{
16kc2 + 3(1− k)c21

}
;

b3k+1 =
1

384k3
{
12k2(2c3 + c1c2)− 16k(k − 1)c1c2 + (k − 1)(2k − 1)c31

}
.(3.20)

Substituting the values of bk+1, b2k+1 and b3k+1 from (3.20) in the second Hankel
determinant to the kth transformation for the function f ∈ CVs, upon simplification,
we obtain

(3.21) |bk+1b3k+1 − b22k+1| =
1

9216k4

∣∣∣144k2c1c3 + 72k2c21c2 − 256k2c22 + 3(k2 − 1)c41

∣∣∣.
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The above expression is equivalent to

|bk+1b3k+1 − b22k+1| =
1

9216k4
|d1c1c3 + d2c

2
1c2 + d3c

2
2 + d4c

4
1|,(3.22)

where d1 = 144k2; d2 = 72k2; d3 = −256k2; d4 = 3(k2 − 1).(3.23)

From Lemma 2.2, substituting the values of c2 and c3 from (2.2) and (2.4) respec-
tively, on the right-hand side of the expression (3.22), applying the same procedure
described in Theorem 3.1, upon simplification, we obtain

4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤ |(d1 + 2d2 + d3 + 4d4)c

4
1

+ 2d1c1(4− c21) + 2(d1 + d2 + d3)c
2
1(4− c21)|x|

− {(d1 + d3)c
2
1 + 2d1c1 − 4d3}(4− c21)|x|2|.(3.24)

Using the values of d1, d2, d3 and d4 from (3.23), after simplifying and substitut-
ing the calculated values on the right-hand side of (3.24) and applying the same
procedure described in Theorem 3.1, we get

(3.25) |d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

[
(11k2 − 3)c4 +

{
72k2c+ 20k2c2µ+

4k2(−7c− 32)(c− 2)µ2
}
(4− c2)

]
.

= F (c, µ), for 0 ≤ µ = |x| ≤ 1,

(3.26) where F (c, µ) = (11k2 − 3)c4 +
{
72k2c+ 20k2c2µ

+4k2(−7c− 32)(c− 2)µ2
}
(4− c2).

Applying the same procedure described in Theorem 3.1, we observe that ∂F
∂µ > 0.

Therefore, F (c, µ) becomes an increasing function of µ.Moreover, for fixed c ∈ [0, 2],
we have

(3.27) max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).

In view of (3.27), replacing µ by 1 in (3.26), which simplifies to

(3.28) G(c) = (19k2 − 3)c4 − 288k2c2 + 1024k2,

(3.29) G′(c) = 4(19k2 − 3)c3 − 576k2c.

From the expression (3.29), we observe that G′(c) ≤ 0 for every c ∈ [0, 2] and for all
values of k so that the maximum value of G(c) occurs at c = 0 only, from (3.28), it
is given by

(3.30) max
0≤c≤2

G(0) = 1024k2.
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Simplifying the relations (3.22) and (3.25) along with (3.30), we get

(3.31) |bk+1b3k+1 − b22k+1| ≤
1

9k2
.

If we set c1 = c = 0 and choosing x = 1 in (2.2) and (2.4), we find that c2 = 2
and c3 = 0 respectively. Using these values in (3.21), we observe that equality
is attained, which shows that our result is sharp. For these values, we derive the
extremal function as

(3.32)
2{zf ′(z)}′

f ′(z) + f ′(−z)
= 1 + 2z2 + 2z4 + ... =

1 + z2

1− z2
.

This completes the proof of our second Theorem 3.2. 2

Remark. Choosing k = 1 in (3.31), it coincides with that of RamReddy and
Vamshee Krishna [15].
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