• 제목/요약/키워드: Starlike function

검색결과 93건 처리시간 0.028초

SUFFICIENT CONDITIONS FOR STARLIKENESS OF RECIPROCAL ORDER

  • Saravanarasu Madhumitha;Vaithiyanathan Ravichandran
    • Korean Journal of Mathematics
    • /
    • 제31권3호
    • /
    • pp.243-258
    • /
    • 2023
  • A normalized analytic function f defined on the unit disk 𝔻 is starlike of reciprocal order α, 0 ≤ α < 1, if Re(f(z)/(zf'(z))) > α for all z ∈ 𝔻. Such functions are starlike and therefore univalent in 𝔻. Using the well-known Miller-Mocanu differential subordination theory, sufficient conditions involving differential inclusions are obtained for a normalized analytic function to be starlike of reciprocal order α. Furthermore, a few conditions are derived for a function f to belong to a subclass of reciprocal starlike functions, satisfying |f(z)/(zf'(z)) - 1| < 1 - α.

SUFFICIENT CONDITIONS FOR ANALYTIC FUNCTIONS TO BE STARLIKE OF RECIPROCAL ORDER

  • Shalu Yadav;V. Ravichandran
    • 호남수학학술지
    • /
    • 제46권1호
    • /
    • pp.120-135
    • /
    • 2024
  • A normalized analytic function f, defined on the unit disk 𝔻, is starlike of reciprocal order α > 1 if the real part of f(z)/(zf'(z)) is less than α for all z ∈ 𝔻. By utilizing the theory of differential subordination, we establish several sufficient conditions for analytic functions defined on 𝔻 to be starlike of reciprocal order. Additionally, we investigate the conditions under which the function f(z)/(zf'(z)) is subordinate to the function 1 + (α - 1)z. This subordination, in turn, is sufficient for the function f to be starlike of reciprocal order α > 1.

APPLICATIONS OF DIFFERENTIAL SUBORDINATIONS TO CERTAIN CLASSES OF STARLIKE FUNCTIONS

  • Banga, Shagun;Kumar, S. Sivaprasad
    • 대한수학회지
    • /
    • 제57권2호
    • /
    • pp.331-357
    • /
    • 2020
  • Let p be an analytic function defined on the open unit disk 𝔻. We obtain certain differential subordination implications such as ψ(p) := pλ(z)(α+βp(z)+γ/p(z)+δzp'(z)/pj(z)) ≺ h(z) (j = 1, 2) implies p ≺ q, where h is given by ψ(q) and q belongs to 𝒫, by finding the conditions on α, β, γ, δ and λ. Further as an application of our derived results, we obtain sufficient conditions for normalized analytic function f to belong to various subclasses of starlike functions, or to satisfy |log(zf'(z)/f(z))| < 1, |(zf'(z)/f(z))2 - 1| < 1 and zf'(z)/f(z) lying in the parabolic region v2 < 2u - 1.

MAJORIZATION PROBLEMS FOR UNIFORMLY STARLIKE FUNCTIONS BASED ON RUSCHEWEYH q-DIFFERENTIAL OPERATOR RELATED WITH EXPONENTIAL FUNCTION

  • Vijaya, K.;Murugusundaramoorthy, G.;Cho, N.E.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.71-81
    • /
    • 2021
  • The main object of this present paper is to study some majorization problems for certain classes of analytic functions defined by means of q-calculus operator associated with exponential function.

HARMONIC MEROMORPHIC STARLIKE FUNCTIONS

  • Jahangiri, Jay, M.
    • 대한수학회보
    • /
    • 제37권2호
    • /
    • pp.291-301
    • /
    • 2000
  • We give sufficient coefficient conditions for a class of meromorphic univalent harmonic functions that are starlike of some order. Furthermore, it is shown that these conditions are also necessary when the coefficients of the analytic part of the function are positive and the coefficients of the co-analytic part of the function are negative. Extreme points, convolution and convex combination conditions for these classes are also determined. Fianlly, comparable results are given for the convex analogue.

  • PDF

First Order Differential Subordinations for Carathéodory Functions

  • Gandhi, Shweta;Kumar, Sushil;Ravichandran, V.
    • Kyungpook Mathematical Journal
    • /
    • 제58권2호
    • /
    • pp.257-270
    • /
    • 2018
  • The well-known theory of differential subordination developed by Miller and Mocanu is applied to obtain several inclusions between $Carath{\acute{e}}odory$ functions and starlike functions. These inclusions provide sufficient conditions for normalized analytic functions to belong to certain class of Ma-Minda starlike functions.