
J. Korean Math. Soc. 57 (2020), No. 2, pp. 331–357

https://doi.org/10.4134/JKMS.j190051

pISSN: 0304-9914 / eISSN: 2234-3008

APPLICATIONS OF DIFFERENTIAL SUBORDINATIONS TO

CERTAIN CLASSES OF STARLIKE FUNCTIONS

Shagun Banga and S. Sivaprasad Kumar

Abstract. Let p be an analytic function defined on the open unit disk D.

We obtain certain differential subordination implications such as ψ(p) :=
pλ(z)(α+βp(z)+γ/p(z)+δzp′(z)/pj(z)) ≺ h(z) (j = 1, 2) implies p ≺ q,
where h is given by ψ(q) and q belongs to P, by finding the conditions
on α, β, γ, δ and λ. Further as an application of our derived results, we

obtain sufficient conditions for normalized analytic function f to belong to

various subclasses of starlike functions, or to satisfy | log(zf ′(z)/f(z))| <
1, |(zf ′(z)/f(z))2 − 1| < 1 and zf ′(z)/f(z) lying in the parabolic region

v2 < 2u− 1.

1. Introduction

The set of analytic functions f defined on the unit disk D = {z : |z| < 1}
of the form f(z) = z + a2z

2 + a3z
3 + · · · is denoted by A. Let S denote

the subclass of A consisting of univalent functions. Let A0 be the class of
all analytic functions p(z), which does not vanish anywhere in D, with the
normalization p(0) = 1. Let P denote the subclass of A0 consisting of the
functions p with the positive real part. This class is known as Carathéodory
class of functions. For two analytic functions f and g, we have f subordinate
to g, written as f ≺ g, if there is a Schwarz function w such that w(0) = 0,
|w(z)| < 1 and f(z) = g(w(z)). If g is univalent, then f ≺ g if and only if
f(0) = g(0) and f(D) ⊆ g(D). Ma and Minda [8] introduced the classes:

S∗(φ) =

{
f ∈ S :

zf ′(z)

f(z)
≺ φ(z)

}
and

C(φ) =

{
f ∈ S : 1 +

zf ′′(z)

f ′(z)
≺ φ(z)

}
,
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where φ is an analytic univalent function with positive real part in D such that
φ(D) is symmetric with respect to the real axis and starlike with respect to
φ(0) = 1 with φ′(0) > 0. For different choices of φ, S∗(φ) reduces to well known
classes. For example, when φ(z) := (1+Az)/(1+Bz), S∗((1+Az)/(1+Bz)) =:
S∗[A,B], is the class of Janowski starlike functions [5], where −1 ≤ B < A ≤ 1.
For A = 1 and B = −1, this class reduces to the class of normalized starlike
functions, S∗((1 + z)/(1 − z)) =: S∗[−1, 1] and for A = 1 − 2ν (0 ≤ ν < 1)
and B = −1, Robertson [17] introduced the class of starlike functions of order
ν, S∗((1 + (1− 2ν)z)/(1− z)) =: S∗(ν). Note that S∗(0) = S∗, is the class of
starlike functions. Another interesting class is the class of starlike functions of
reciprocal order ν, in D, which is given by

Re

(
f(z)

zf ′(z)

)
> ν (z ∈ D).

For φ(z) :=
√

1 + z, Sokó l and Stankiewicz [20] introduced the class of analytic
functions associated with lemniscate of Bernoulli, S∗L := S∗(

√
1 + z). Functions

satisfying | log(zf ′(z)/f(z))| < 1, belongs to the class S∗e :=S∗(ez), introduced
by Mendiratta et al. [10]. The class of strongly starlike functions of order η is
introduced in [1] and [22]. We denote it by

SS∗(η) := {f ∈ A : | arg(zf ′(z)/f(z))| < ηπ/2}, (0 < η ≤ 1).

It is obtained when φ(z) := ((1 + z)/(1− z))η. The speciality of this class lies
in the fact that it helps to study the function in terms of argument estimation.
For η = 1, it reduces to the class of normalized starlike functions S∗. For
φ(z) := ((1 + cz)/(1− z))(η1+η2)/2, Liu and Srivastava [7] introduced the class

(1)
SS∗(η1, η2) = {f ∈ A : −η2π/2 < | arg(zf ′(z)/f(z))| < η1π/2}

(0 < η1, η2 ≤ 1),

where

(2) η =
η1 − η2
η1 + η2

, c = eηπi.

As per the definition of the class SS∗(η1, η2) in (1), we give the name oblique
sector function to the above defined function ((1 + cz)/(1− z))(η1+η2)/2. Note
that SS∗(η, η) reduces to the class SS∗(η). The class SP :=S∗(φPAR(z)), in-
troduced by Rønning [18], is the class of parabolic starlike functions, where

φPAR(z) := 1 +
2

π2

(
log

1 +
√
z

1−
√
z

)2

Im
√
z ≥ 0,

consists of functions f ∈ A, such that Re(zf ′(z)/f(z)) > |zf ′(z)/f(z)−1|. Let
N (κ) be the subclass of A consisting of the functions f(z) which satisfy the
following

Re

(
1 +

zf ′′(z)

f ′(z)

)
< κ (κ > 1; z ∈ D).
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Uralegaddi et al. [24] investigated the class N (κ) for 1 < κ < 4/3.
Let ψ be analytic in a domain D ⊂ C2 and h be univalent in D. Then an

analytic function p is the solution of the first order differential subordination if

ψ(p(z), zp′(z)) ≺ h(z), (p(z), zp′(z)) ∈ D for z ∈ D.(3)

Then the dominant of the differential subordination (3) is the univalent function
q, if p ≺ q for all the solutions p of (3). The best dominant of all the dominants
of differential subordination (3) is the function q̃ whenever q̃ ≺ q. Miller and
Mocanu [11] discussed the general theory of the first-order differential subor-
dinations. Motivated by this result, many authors [19], [21] established several
generalizations of first order differential subordination. Recently, the authors
[16] obtained some sufficient conditions for analytic functions in D to satisfy
the subordination p(z) ≺ q(z) and in specific to have positive real part. Many
authors [2], [3], [4], [7] and [13] have evolved this concept of finding conditions
on the parameters involved in the first order differential subordination as given
in (3) in order to prove p(z) ≺ ((1 + z)/(1 − z))η, (0 < η ≤ 1) by satisfying
the condition | arg(ψ(p(z), zp′(z))| ≤ arg(h(z)), after estimating the argument
of h(z).

In this paper, we obtain certain differential subordination implications by
finding conditions on the parameters involved in it. Mainly, our results involve
two admissible classes of analytic functions:

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p(z)

)
≺ h(z)

and

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p2(z)

)
≺ h(z),

which implies p(z) ≺ q(z), where h is univalent and q(z) ∈ P. Also, we study
these classes in terms of argument estimation of the class for the oblique sector
function q.

In Section 3, we also obtain sufficient conditions for functions belonging
in S∗(ν) (ν = 0, 1/2), S∗e , S∗L, S∗[A,B], (−1 < B < A ≤ 1) and SP as
an application of our derived results in Section 2. In some cases, our results
become the general case of the results obtained by Ravichandran and Kumar
[16], Nunokawa et al. [14], Obradowič and Tuneski [15] and Cho et al. [4]. We
also extend the result obtained by Mocanu [12].

Miller and Mocanu [11] gave the following result which is required to prove
our main results.

Lemma 1.1. Let q(z) be univalent in the unit disk D and θ and φ be analytic
in a domain D containing q(D) with φ(ω) 6= 0 when ω ∈ q(D). Set Q(z) =
zq′(z)φ(q(z)), h(z) = θ(q(z))+Q(z). Suppose that (i) Q(z) is starlike univalent
in D, and (ii) Re (zh′(z)/Q(z)) > 0 for z ∈ D. If p(z) is analytic in D with
p(0) = q(0), p(D) ⊂ D and satisfies

θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)),(4)
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then p(z) ≺ q(z) and q(z) is the best dominant.

2. Results involving differential subordination implications

We begin with the following main results:

Theorem 2.1. Let λ be a real number and α, β, γ and δ( 6= 0) be complex num-
bers. Suppose q(z) ∈ A0 be univalent in D and satisfy the following conditions
for z ∈ D:

(1) Q(z) := δzq′(z)qλ−1(z) be starlike (univalent).

(2) Re

(
αλ

δ
+
β(λ+ 1)

δ
q(z) +

γ(λ− 1)

δq(z)
+ (λ− 1)

zq′(z)

q(z)
+

(
1 +

zq′′(z)

q′(z)

))
> 0 =: Re(H(z)).

If p(z) ∈ A0 satisfies

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p(z)

)
≺ qλ(z)

(
α+ βq(z) +

γ

q(z)
+ δ

zq′(z)

q(z)

)
,

then p(z) ≺ q(z) and q(z) is the best dominant.

Proof. Let θ(ω) = ωλ (α+ βω + γ/ω), ω 6= 0 and φ(ω) = δωλ−1. Thus, φ(ω) 6=
0 and θ(ω), φ(ω) are analytic in C − {0}. Let the function Q(z) and h(z) be
given by

Q(z) := zq′(z)φ(q(z)) = δzq′(z)qλ−1(z)

and

h(z) := θ(q(z)) +Q(z) = qλ(z)

(
α+ βq(z) +

γ

q(z)
+ δ

zq′(z)

q(z)

)
.

Thus, we have Q(z) is starlike and Re(zh′(z)/Q(z)) reduces to

(5) Re

(
αλ

δ
+
β(λ+1)

δ
q(z)+

γ(λ−1)

δq(z)
+(λ−1)

zq′(z)

q(z)
+

(
1+

zq′′(z)

q′(z)

))
> 0.

On substituting q(z) as p(z) in θ(q(z)) +Q(z), we get

θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)).

The result follows by an application of Lemma 1.1. �

Remark 2.2. (i) Suppose that the function f is analytic in a bounded domain
D and continuous on D.

(ii) Suppose that u(x, y) is a real part of non-constant analytic function f on
a bounded domain D and u(x, y) is lower/upper bounded in D. If either of the
conditions (i), (ii) hold, then the real part of an analytic function f attains its
minimum/maximum value, respectively on the boundary of D, by Minimum/
Maximum Modulus Theorem.

As a consequence of the condition (ii) that has been used in this paper,
we have to incorporate certain conditions on the parameters involved in the
differential subordination implications in order to satisfy the two conditions of
Lemma 1.1.
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We give the following example to illustrate Remark 2.2.

Example 2.3. (i) Consider the function f(z) = z/(1−z), (z ∈ D). Now, to ob-
tain the maximum/minimum value of the real part of f(z) on the bounded do-
main D, either of the above two conditions of Remark 2.2 should hold. Clearly,
(i) fails as the function f(z) is non continuous on D, so we apply (ii). For
z = x+ iy (x2 + y2 < 1), we have

Re(f(z)) =
x− x2 − y2

(1− x)2 + y2
=: f(x, y).

The function f(x, y) is unbounded when x tends to 1 and y tends or equal to
0. These are the only two possibilities for the function to be unbounded in D.
For this, we consider two cases:

Case 1: Let y = 0 in f(x, y), then we get

f(x) = x/(1− x).

Clearly, f(x) is unbounded when x tends to 1. As a result, we assume x = 1−h,
(h→ 0) in f(x), we get

lim
h→0

f(1− h) = lim
h→0

1− h
h
→ +∞.

This shows that the real part of f(z) is not upper bounded.
Case 2: Let x = 1− h in f(x, y), (h→ 0), we get

lim
h→0

f(1− h, y) = lim
h→0

−h− h2 + 2h− y2

h2 + y2
→ −1, ∀y.

Thus, in particular for those y such that (1 − h)2 + y2 < 1 holds, f(x, y) is
bounded.

We conclude that the function is lower bounded but not upper bounded.
Thus, we can only obtain minimum of real part of f(z) by evaluating on the
boundary of D. For z = eiθ (θ ∈ [−π, π]), we get

Re(f(eiθ)) = −1/2.

We infer that minimum value of real part of f(z) is −1/2 and maximum value
can not be obtained by evaluating on the boundary of D as it fails to be upper
bounded.

(ii) Consider the Koebe function K(z) := z/(1− z)2. It maps the open unit
disk D onto the entire complex plane minus the slit along the negative real
axis from w = −∞ to w = −1/4. Thus, real part of the Koebe function is
unbounded, which can also be verified. For z = x+ iy (x2 + y2 < 1), we have

Re(K(z)) =
x− 2x2 + x3 − 2y2 + xy2

(1− x)2 + y2
=: f(x, y).

It is trivial to say that the real part of K(z) could only be unbounded when z
tends to 1. Equivalently, we can say f(x, y) is unbounded when x tends to 1
and y tends to or equal to 0. This is a complex plane so x can tend to 1 from
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all the directions, unlike on the real line where it can only tend along the real
axis. Thus, we consider two cases:

Case 1: Let y = 0 in f(x, y) and proceeding same as in the case 1 in part
(i), we assume x = 1− h, (h→ 0) in f(x), we get

lim
h→0

f(1− h) = lim
h→0

1− h
h2

→ +∞.

Thus, f(x, y) is not upper bounded in this case.
Case 2: Let x = 1− h in f(x, y) (h→ 0), we get

lim
h→0

f(1− h, y) =
−1

y2
→ −∞, y = 0.

Clearly, it is not lower bounded in this case.
Now, let z = eiθ (θ ∈ [−π, π]), we get

Re(z/(1− z)2) = −1/(4 sin2 θ) := g(θ).

We infer that the maximum value of g(θ) is −1/4, attained at θ = π/2. There-
fore, we conclude that max Re(K(z)) = −1/4, which is absurd as clearly from
both the cases 1 and 2, we observe that real part of K(z) is unbounded. Thus,
we cannot evaluate the real part of K(z) on the boundary of D to find the
maximum value. This is due to the failure of both the conditions (i) and (ii)
in Remark 2.2 for the Koebe function. Therefore, the maximum value of the
real part of K(z) is not attained on the boundary of D.

Taking α, β, γ and δ to be real numbers in the above Theorem 2.1, we obtain
the following results:

Corollary 2.4. Let 0 ≤ λ ≤ 1 and γδ ≤ 0. (i) For 0 ≤ ν ≤ 1/2, let (α +
νβ)/δ ≥ ν/(2(1 − ν)) and 1 + 2(1 − ν)β/δ > 0. (ii) For 1/2 ≤ ν < 1, let
α+ νβ/δ ≥ (1− ν)/(2ν) and 2β/δ > (ν − 1)/ν2. If p(z) ∈ A0 satisfies

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p(z)

)
≺
(

1 + (1− 2ν)z

1− z

)λ(
α+ β

(
1 + (1− 2ν)z

1− z

)
+

γ(1− z)
1 + (1− 2ν)z

+ δ

(
(1− 2ν)z

1 + (1− 2ν)z
+

z

1− z

))
=: h(z),(6)

then Re p(z) > ν.

Proof. Let q(z) = (1 + (1− 2ν)z)/(1− z) in Theorem 2.1. Then we have,

Q(z) =
2(1− ν)z

(1− z)1+λ(1 + (1− 2ν)z)1−λ
,

and

zQ′(z)

Q(z)
= 1 + (1 + λ)

z

1− z
− (1− λ)

(1− 2ν)z

1 + (1− 2ν)z
=: K(z).
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If z = eiθ, where θ ∈ [−π, π], we have

Re(K(z)) =

(
1− λ

2

)(
ν(1− ν)

ν2 + (1− 2ν) cos2(θ/2)

)
.(7)

Since 1− λ, ν(1− ν), ν2 + (1− 2ν) cos2(θ/2) ≥ 0, it follows that Q is starlike
(univalent) in D. Also, from condition (2) of Theorem 2.1, we have

H(z) :=
αλ

δ
+
β(λ+ 1)

δ

(
1 + (1− 2ν)z

1− z

)
+
γ(λ− 1)

δ

(
1− z

1 + (1− 2ν)z

)
+ (λ− 1)

(
(1− 2ν)z

1 + (1− 2ν)z
+

z

1− z

)
+

(
1 +

2z

1− z

)
.

For z = eiθ (θ ∈ [−π, π]), real part of H(z) reduces to

1 +
αλ

δ
+
β(λ+ 1)

δ
ν +

γ(λ− 1)

δ
A(θ)− λ+ 1

2
+ (λ− 1)(1− 2ν)B(θ) =: L(θ),

where A(θ) = (ν sin2(θ/2))/(ν2 + (1 − 2ν) cos2(θ/2)) and B(θ) = (1 − 2ν +
cos θ)/(2(1 − 2ν + cos θ + 2ν(ν − cos θ))). Also, considering Remark 2.2, we
need to have

(8) γ/δ < 1/2 and 1 + 2β(1− ν)/δ > 0,

which is trivial as the given conditions γδ ≤ 0 and 2β/δ > (ν − 1)/ν2 imply
the conditions in the equation (8), respectively. Now, to complete the proof it
suffices to show that L(θ) ≥ 0 for the conditions given in the hypothesis. For
this, we consider the following cases:

Case 1: Consider 0 ≤ ν ≤ 1/2, then (1− 2ν) ≥ 0. As 0 ≤ λ ≤ 1 and γδ ≤ 0,
we take into account the minimum value of A(θ) = 0 and the maximum value
of B(θ) = 1/(2(1 − ν)), that are attained at θ = 0 by the second derivative
test. Thus, we get

L(θ) ≥ λ
(
α

δ
+
βν

δ
+

1− 2ν

2(1− ν)
− 1

2

)
+

1

2
+
βν

δ
− 1− 2ν

2(1− ν)
≥ 0,

which is possible when (α+ βν)/δ ≥ ν/(2(1− ν)).
Case 2: Consider 1/2 ≤ ν < 1 then (1 − 2ν) ≤ 0. Similarly, taking the

range of λ and γδ into consideration we take into account the minimum value
of B(θ) = −1/(2ν) which is attained at θ = π by the second derivative test
and let A(θ) to be same as in the case 1. Thus, we get

L(θ) ≥ λ
(
α

δ
+
βν

δ
− 1− 2ν

2ν
− 1

2

)
+

1

2
+
βν

δ
+

1− 2ν

2ν
≥ 0,

which is possible when (α+βν)/δ ≥ (1−ν)/(2ν) and β/δ > (ν−1)/2ν2. With
this, we complete the proof. �

We obtain the relation between the class of starlike of reciprocal order ν and
N (κ) in the following corollary:

Corollary 2.5. Let f ∈ A. The function f is starlike of reciprocal order ν if
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(a) f ∈ N ((3− ν)/2ν), 0 < ν ≤ 3/4.
(b) f ∈ N (ν/2(1− ν)), 3/4 ≤ ν < 1.

Proof. Let p(z) = f(z)/(zf ′(z)), β = λ = 0, γ = −δ = 1 and α = min((ν −
1)/(2ν); ν/(2(ν − 1))) in Corollary 2.4, we get, if f satisfies

1 +
zf ′′(z)

f ′(z)
≺ 1 + 2(ν − 1)z

1 + (1− 2ν)z
− z

1− z
=: S(z),(9)

then Re(f(z)/(zf ′(z))) > ν. To complete the proof it suffices to show that
Re(S(z)) < (3 − ν)/(2ν) for 0 < ν ≤ 3/4 and Re(S(z)) < ν/(2(1 − ν)) for
3/4 ≤ ν < 1. Since, S(z) is upper bounded, evaluating it on the boundary of
D, we obtain

Re(S(eiθ)) =
1− 6ν + 4ν2 + cos(θ)

−2 + 4ν − 4ν2 − 2 cos(θ) + 4ν cos(θ)
+

1

2
=: g(θ).

A calculation shows that g′′(θ)θ=π = (1 − ν)(4ν − 3)/(4ν3) and g′′(θ)θ=0 =
ν(4ν − 3)/(4(ν − 1)3).

(a) For 0 < ν ≤ 3/4, max g(θ) = (3 − ν)/(2ν), attained at θ = π and we
obtain

Re

(
1 +

zf ′′(z)

f ′(z)

)
<

3− ν
2ν

,

equivalently, f ∈ N ((3− ν)/(2ν)). This completes the proof for part (a).
(b) For 3/4 ≤ ν < 1, max g(θ) = ν/(2(1 − ν)), attained at θ = 0 and we

obtain

Re

(
1 +

zf ′′(z)

f ′(z)

)
<

ν

(2(1− ν))
,

equivalently, f ∈ N (ν/2(1− ν)). This completes the proof for part (b). �

Taking ν = 0 in Corollary 2.4, we get the following result:

Corollary 2.6. Let 1 + 2β/δ > 0, γδ ≤ 0, αδ ≥ 0 and 0 ≤ λ ≤ 1. If p(z) ∈ A0

satisfies

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p(z)

)
≺
(

1 + z

1− z

)λ(
α+ β

(
1 + z

1− z

)
+ γ

(
1− z
1 + z

)
+

2δz

1− z2

)
,

then Re p(z) > 0.

Taking ν = 1/2 in Corollary 2.4, we get the following result:

Corollary 2.7. Let 1 + β/δ > 0, γδ ≤ 0, −1 + (2α+ β)/δ ≥ 0 and 0 ≤ λ ≤ 1.
If p(z) ∈ A0 satisfies

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p(z)

)
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≺
(

1

1− z

)λ(
α+ β

1

1− z
+ γ(1− z) +

δz

1− z

)
,

then Re p(z) > 1/2.

Considering oblique sector function q in Theorem 2.1, which is defined as

q(z) =

(
1 + cz

1− z

)η1+η2
2

(0 < η1, η2 ≤ 1),

where c and η are as defined in the equation (2). We have Re(zQ′(z)/Q(z)) > 0
for given η and λ from [7, Theorem 2, p. 6], where Q is as defined in the
condition (1) of Theorem 2.1. Therefore, Q(z) is starlike (univalent) in D.
Also, from condition (2) of Theorem 2.1, we have

H(z) =

αλ
δ

+
β(λ+1)

δ

(
1+cz

1−z

)η1+η2
2

+
γ(λ−1)

δ

(
1−z
1+cz

)η1+η2
2

+
zQ′(z)

Q(z)

 .

In view of the fact that q(z) ∈ P implies 1/q(z) ∈ P, we get

Re(H(z)) > αλ/δ ≥ 0,

provided β(λ + 1)/δ, γ(λ − 1)/δ, αλ/δ ≥ 0. Therefore, both the conditions of
Theorem 2.1 get satisfied and we get the result as follows:

Corollary 2.8. Let αλ/δ ≥ 0, β(λ+ 1)/δ ≥ 0, γ(λ− 1)/δ ≥ 0, 0 < η1, η2 ≤ 1
and |λ| ≤ 2/(η1 + η2). If p(z) ∈ A0 satisfies

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p(z)

)

≺
(

1 + cz

1− z

) (η1+η2)λ
2

(
α+ β

(
1 + cz

1− z

)η1+η2
2

+ γ

(
1− z
1 + cz

)η1+η2
2

+
η1 + η2

2

(
(1 + c)z

(1 + cz)(1− z)

))
,

then p(z) ≺ ((1 + cz)/(1− z))(η1+η2)/2.

Remark 2.9. Taking α = γ = 0 and δ = 1, Corollary 2.8 is the result obtained
by [7].

Letting η1 = η2 and c = 1 in Corollary 2.8, we have the following result:

Corollary 2.10. Let αλ/δ ≥ 0, β(λ + 1)/δ ≥ 0, γ(λ − 1)/δ ≥ 0, 0 < η ≤ 1
and |λ| ≤ 1/η. If p(z) ∈ A0 satisfies

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p(z)

)
≺
(

1 + z

1− z

)ηλ(
α+ β

(
1 + z

1− z

)η
+ γ

(
1− z
1 + z

)η
+

2δηz

1− z2

)
=: h(z),(10)
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then p(z) ≺ ((1 + z)/(1− z))η.

Taking λ = 1 and γ = 0 in Corollary 2.10, we have the following result:

Corollary 2.11. Let αδ, βδ ≥ 0. If p(z) ∈ A0 and

αp(z) + βp(z)2 + δzp′(z) ≺ α
(

1 + z

1− z

)η
+ β

(
1 + z

1− z

)2η

+
2δηz

1− z2

(
1 + z

1− z

)η
,

then | arg p(z)| < ηπ/2.

Remark 2.12. Corollary 2.11 is the result obtained by Ravichandran and Kumar
[16] for αδ, βδ > 0.

Taking η = 1 in Corollary 2.10, we get the following result:

Corollary 2.13. Let αλ/δ ≥ 0, β(λ + 1)/δ ≥ 0, γ(λ − 1)/δ ≥ 0 and |λ| ≤ 1.
If p(z) ∈ A0 satisfies

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p(z)

)
≺
(

1 + z

1− z

)λ(
α+ β

(
1 + z

1− z

)
+ γ

(
1− z
1 + z

)
+

2δz

1− z2

)
,

then Re p(z) > 0.

The argument estimation of the function h as given by the right hand side
of the subordination (10), gives the reformulation of Corollary 2.10 with γ = 0
and 0 ≤ λ ≤ 1/η as follows:

Corollary 2.14. Let α, β ≥ 0 and δ be a positive real number. If p(z) ∈ A0

satisfies ∣∣∣∣arg

(
pλ(z)

(
α+ βp(z) + δ

zp′(z)

p(z)

))∣∣∣∣ < π

2
ζ,(11)

where (i) ζ = ηλ, whenever 0 ≤ η ≤ 1/2, (ii) ζ = ηλ + 1/2, whenever 1/2 ≤
η ≤ 1 and δη ≥ α, (iii) ζ = ηλ+ 2/π tan−1(δη/α), whenever 1/2 ≤ η ≤ 1 and
α ≥ δη, then

| arg p(z)| < π

2
η.

Proof. Here, h(z) is given by

h(z) :=

(
1 + z

1− z

)ηλ(
α+ β

(
1 + z

1− z

)η
+

2δηz

1− z2

)
.

Consider

h(eiθ) =

(
i cot

θ

2

)ηλ(
α+ β

(
i cot

θ

2

)η
+ i

δη

sin θ

)
=

∣∣∣∣cot
θ

2

∣∣∣∣ηλ e±iηλπ/2(α+ β

∣∣∣∣cot
θ

2

∣∣∣∣η e±iηπ/2 + i
δη

sin θ

)
.
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Note that the ‘+’ sign comes for 0 < θ < π and the ‘−’ sign comes for −π <
θ < 0. Also, we observe that the real and the imaginary part of h(eiθ) is an
even and odd function of θ, respectively. Thus, we will consider 0 < θ < π.
Then, we have the following

arg h(eiθ) =
π

2
ηλ+ arg

(
α+ β

∣∣∣∣cot
θ

2

∣∣∣∣n eiηπ/2 + i
δη

sin θ

)
=
π

2
ηλ+ tan−1

(
β| cot(θ/2)|η sin(ηπ/2) + δη/ sin(θ)

α+ β| cot(θ/2)|η cos(ηπ/2)

)
≥ π

2
ηλ+ tan−1

(
βsη sin(ηπ/2) + δη

α+ βsη cos(ηπ/2)

)
=:

π

2
ηλ+ tan−1 g(s)(12)

for α, β ≥ 0, δ > 0 and where s = | cot θ/2|, (s1 ≤ s ≤ s2). Note that s1 → 0
and s2 → ∞. To complete the proof, it suffices to show that arg(heiθ) ≥
ζπ/2, which equivalently implies | arg(pλ(z)(α + βp(z) + δzp′(z)/p(z)))| <
arg(h(z)) which further yields p(z) ≺ ((1 + z)/(1 − z))η as pλ(z)(α + βp(z) +
δzp′(z)/p(z)) ≺ h(z) implies p(z) ≺ ((1 + z)/(1− z))η from Corollary 2.10. For
this we consider two cases:

Case 1: Let 0 < η ≤ 1/2, then

g(s) ≥ βsη sin(ηπ/2)

α+ βsη cos(ηπ/2)
≥ βsη1 sin(ηπ/2)

α+ βsη1 cos(ηπ/2)
≈ 0.

This completes the proof for the mentioned range of η in this case.
Case 2: Let 1/2 ≤ η ≤ 1, then

g(s) ≥ βsη cos(ηπ/2) + δη

α+ βsη cos(ηπ/2)
=: l(s).

When δη ≥ α, l(s) attains its minimum value at s = s2. Thus, we obtain

l(s) ≥ βsη2 sin(ηπ/2) + δη

α+ βsη2 cos(ηπ/2)
≈ 1.

When α ≥ δη, l(s) attains its minimum value at s = s1. Thus, we obtain

l(s) ≥ βsη1 sin(ηπ/2) + δη

α+ βsη1 cos(ηπ/2)
≈ δη

α
.

This completes the proof for the mentioned range of η in this case. Thus, both
the cases yield the desired condition arg h(eiθ) ≥ ζπ/2 and hence the result. �

Remark 2.15. For 1/2 ≤ η ≤ 1 and taking β = 0 in Corollary 2.14, we get the
result obtained by Cho et al. [4], when restricting its range of η.

Corollary 2.16. Let δ > 0, |λµ| ≤ 1 and αλ ≥ −(A + B), where A =
β(λ+ 1)/e|µ| ≥ 0 and B = γ(λ− 1)/e|µ| ≥ 0. If p(z) ∈ A0 satisfies

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p(z)

)
≺ eλµz

(
α+ βeµz + γe−µz + δµz

)
,

then p(z) ≺ eµz, where µ is a non-zero real number such that |µ| ≤ 1.
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Proof. This result follows from Theorem 2.1 by taking q(z) = eµz. ThenQ(z) =
δµzeλµz and by taking z = x+ iy (x2 + y2 < 1), we get

Re

(
zQ′(z)

Q(z)

)
= 1 + λµx.

A simple computation shows that Q(z) is starlike (univalent) in D whenever
|λµ| ≤ 1. Also, in view of the fact that Re(eµz), Re(e−µz) > 1/e|µ|, it follows
that

Re

(
αλ

δ
+
β(λ+ 1)

δ
q(z) +

γ(λ− 1)

δ

1

q(z)
+ (λ− 1)

zq′(z)

q(z)
+

(
1 +

zq′′(z)

q′(z)

))
= Re

(
1 + λµz +

αλ

δ
+
β(λ+ 1)

δ
eµz +

γ(λ− 1)

δ
e−µz

)
> 1 + λµx+

αλ

δ
+
β(λ+ 1)

δ

1

e|µ|
+
γ(λ− 1)

δ

1

e|µ|
=: S(x)

for A, B > 0 and δ ≥ 0. For the given range of |λµ|, we consider two cases:
Case 1: Let −1 ≤ λµ ≤ 0, then 1 + λµx > 1 + λµ ≥ 0 and we obtain

S(x) >
αλ

δ
+
β(λ+ 1)

δ

1

e|µ|
+
γ(λ− 1)

δ

1

e|µ|
.(13)

Case 2: Let 0 ≤ λµ ≤ 1, then 1 +λµx > 1−λµ ≥ 0 and we obtain the same
equation (13) as in the case 1.

Further S(x) ≥ 0 if αλ ≥ (γ − β − λ(β + γ))/e|µ|, which is trivial from the
conditions in the hypothesis. Thus, both the conditions of Theorem 2.1 get
satisfied and hence the result. �

Taking µ = 1 in Corollary 2.16, we obtain:

Corollary 2.17. Let δ > 0, |λ| < 1 and αλ ≥ −(A + B), where A = β(λ +
1)/e ≥ 0 and B = γ(λ− 1)/e ≥ 0. If p(z) ∈ A0 satisfies

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p(z)

)
≺ eλz

(
α+ βez + γe−z + δz

)
,

then p(z) ≺ ez.

Corollary 2.18. Let −2 ≤ λ ≤ 2, γ(λ−1) ≥ 0, β(λ+1) ≥ 0, δ > max(0;
√

2γ),

−(2
√

2γ + δ)/4 < α ≤ −3γ/(2
√

2). If p(z) ∈ A0 satisfies

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p(z)

)
≺ (1 + z)

λ/2

(
α+ β

√
1 + z

+
γ√

1 + z
+

δz

2(1 + z)

)
,

then p(z) ≺
√

1 + z.
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Proof. Now, to achieve the desired result we apply Theorem 2.1 for q(z) =√
1 + z and we get Q(z) = δz(1 + z)λ/2−1/2. Then

zQ′(z)

Q(z)
= 1 +

(
λ

2
− 1

)
z

1 + z
=: K(z).

In view of the fact that K(z) is bounded only if λ ≤ 2, we evaluate it on the
boundary. Therefore, z = eiθ (θ ∈ [−π, π]) yields

Re(K(eiθ)) =
λ+ 2

4
≥ 0

for λ ≥ −2. Clearly Q is starlike (univalent) in D. Also, we have

Re

(
αλ

δ
+
β(λ+ 1)

δ
q(z) +

γ(λ− 1)

δ

1

q(z)
+ (λ− 1)

zq′(z)

q(z)
+

(
1 +

zq′′(z)

q′(z)

))(14)

= Re

(
1 +

αλ

δ
+
β(λ+ 1)

δ

√
1 + z +

γ(λ− 1)

δ

1√
1 + z

+

(
λ

2
− 1

)
z

1 + z

)
≥ 1 +

αλ

δ
+
γ(λ− 1)

δ

1√
2

+
λ

4
− 1

2

= λ

(
1

4
+
α

δ
+

γ√
2δ

)
+

1

2
− γ√

2δ
=: λ(r) + s,

since Re(
√

1 + z) > 0, Re(1/
√

1 + z) > 1/
√

2, β(λ+ 1)/δ and γ(λ− 1)/δ ≥ 0.
Now, to complete the proof we need to find the conditions on the parameters
such that λ(r) + s ≥ 0. For this, it suffices to show that

λ ≥
γ√
2δ
− 1

2

α
δ + γ√

2δ
+ 1

4

,(15)

which is a valid expression when α > −(2
√

2γ + δ)/4 and δ > 0. Also, from

the inequality −2 ≤ λ ≤ 2 we have α ≤ −3γ/(2
√

2) and thus, equation (15)

holds true. And the derived range of α is meaningful only if δ ≥
√

2γ. This
completes the proof. �

The following lemmas will be needed to prove some further results.

Lemma 2.19. For −1 ≤ B < A ≤ 1, the function f(z) = (1 + Az)/(1 + Bz)
satisfies min Ref(z) = (1−A)/(1−B) and min Re(1/f(z)) = (1 +B)/(1 +A).

Proof. Consider

Re(f(eiθ)) =
1 + (A+B) cos θ +AB

1 +A2 + 2A cos θ
=: K(θ).

K(θ) attains its minimum value at θ = π by the second derivative test and the
minimum value is given by

K(π) =
1−A
1−B

.(16)
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Now, consider f(−z) = (1−Az)/(1−Bz). In view of the fact that the image
of unit disk under f(z) is same as f(−z), from equation (16), we get

min Re

(
1 +Bz

1 +Az

)
=

1 +B

1 +A

as −A playing the role as B and −B as A. This completes the proof. �

With the same technique we can also find the minimum and maximum value
of the real part of the functions (1−Bz)/(1 +Bz) and z(A−B)/((1 +Az)(1 +
Bz)), respectively as given in the following lemmas:

Lemma 2.20. For −1 ≤ B < 1, the minimum of real part of the function
f(z) = (1−Bz)/(1 +Bz) is (1− |B|)/(1 + |B|).

Lemma 2.21. For −1 < B < A ≤ 1. Consider the function f(z) = (A −
B)z/((1+Az)(1+Bz)), then max Ref(z) = (A−B)/(1+A)(1+B), whenever
(1 +AB)(1−A)(1−B) > 8AB and min Ref(z) = (B −A)/((1−A)(1−B)),
whenever (1 +AB)(1 +A)(1 +B) > 8AB.

Corollary 2.22. Let 0 ≤ λ ≤ 1 and γδ ≤ 0. For −1 < B < A ≤ 1, if
(1 + AB)(1− A)(1−B) > 8AB, we assume α/δ ≥ (B − A)/((1 + A)(1 +B))
and β/δ ≥ (A−B)(1−B)/((1−A2)(1 +B)). Suppose p(z) ∈ A0 satisfies

pλ(z)

(
α+ βp(z)+

γ

p(z)
+ δ

zp′(z)

p(z)

)
≺
(

1 +Az

1 +Bz

)λ(
α+ β

(
1 +Az

1 +Bz

)
+ γ

(
1 +Bz

1 +Az

)
+ δ

(A−B)z

(1 +Az)(1 +Bz)

)
,

then p(z) ≺ (1 +Az)/(1 +Bz).

Proof. The result is followed by taking q(z) = (1+Az)/(1+Bz) in Theorem 2.1.
Then, we have

Q(z) =
δz(A−B)

(1 +Az)1−λ(1 +Bz)1+λ
,

and
zQ′(z)

Q(z)
= 1 + (λ− 1)

Az

1 +Az
− (1 + λ)

Bz

1 +Bz
=: K(z).

As per Remark 2.2 for −1 ≤ λ ≤ 1, K(eiθ) ≥ 0. Thus, clearly Q(z) is starlike
(univalent) in D. Also, we have

Re

(
αλ

δ
+
β(λ+ 1)

δ
q(z) +

γ(λ− 1)

δ

1

q(z)
+ (λ− 1)

zq′(z)

q(z)
+

(
1 +

zq′′(z)

q′(z)

))(17)

= Re

(
αλ

δ
+
β(λ+ 1)

δ

(
1 +Az

1 +Bz

)
+
γ(λ− 1)

δ

(
1 +Bz

1 +Az

)
+ (λ− 1)

(A−B)z

(1 +Az)(1 +Bz)
+

1−Bz
1 +Bz

)
=: S(z).
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Now, Lemmas 2.19, 2.20 and 2.21 yield

S(z) ≥ αλ

δ
+
β(λ+ 1)

δ

(
1−A
1−B

)
+
γ(λ− 1)

δ

(
1 +B

1 +A

)
+ (λ− 1)

(
A−B

(1 +A)(1 +B)

)
+

(
1− |B|
1 + |B|

)
= λ

(
α

δ
+

A−B
(1 +A)(1 +B)

)
+
β(λ+ 1)

δ

(
1−A
1−B

)
−
(

A−B
(1 +A)(1 +B)

)
+

1− |B|
1 + |B|

+
γ(λ− 1)

δ

(
1 +B

1 +A

)
(18)

for βδ ≥ 0 and γδ ≤ 0. To complete the proof it suffices to prove the second
condition of Theorem 2.1. For this, we need to have equation (18) greater than
or equal to 0, which is possible when 0 ≤ λ ≤ 1, α/δ ≥ (B − A)/(1 + A)(1 +
B) and β/δ ≥ (A − B)(1 − B)/((1 − A2)(1 + B)). Hence the result follows
immediately. �

With λ = 1 and q(z) = φPAR(z) := 1 + (2/π2)(log((1 +
√
z)/(1−

√
z)))2 in

Theorem 2.1, we have the following result:

Corollary 2.23. Let β/δ ≥ max(0;−α/δ). If p(z) ∈ A0 satisfies

αp(z) + βp(z)2 + δzp′(z)

≺
(

1 +
2

π2

(
log

1 +
√
z

1−
√
z

)2)(
α+ β

(
1 +

2

π2

(
log

1 +
√
z

1−
√
z

)2
)

+
4δ

π2

√
z

1− z
log

(
1 +
√
z

1−
√
z

))
,

then p(z) ≺ 1 + (2/π2)(log((1 +
√
z)/(1−

√
z)))2.

Proof. As we know that φPAR(z) is a convex function, thus by Alexander’s the-
orem we have Q(z) = δzq′(z) is starlike (univalent) in D. Also, from condition
(2) of Theorem 2.1, we have

Re(H(z))=Re

(
α

δ
+

2β

δ

(
1 +

2

π2

(
log

(
1 +
√
z

1−
√
z

))2
)

+ 1 +
zq′′(z)

q′(z)

)
.(19)

Evaluating the equation (19) on z = eiθ (θ ∈ [−π, π]), we obtain

Re(H(eiθ)) ≥ Re

(
α

δ
+

2β

δ

(
1 +

2

π2
(log

(
i cot(θ/4))2

)))
=
α

δ
+

2β

δ

(
1

2
+

2

π2
log(cot(θ/4))2

)
=:

α

δ
+

2β

δ
g(θ).(20)

For θ = π, simple calculation shows that

g′′(θ) = csc2(θ/4) log(cot(θ/4))/(4π2) + (csc2(θ/4) sec(θ/4)2)/(4π2)

− (log(cot(θ/4))) sec2(θ/4)/(4π2) > 0.
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Thus, Re(H(eiθ)) ≥ 0 from equation (20), on substituting g(π) = 1/2, the
minimum value of g(θ). Hence, both the conditions of Theorem 2.1 get satisfied
and therefore the result follows. �

Theorem 2.24. Let α, β, γ and (0 6=)δ be complex numbers and λ be a real
number. Let q(z) ∈ A0 be univalent in D and satisfy the following conditions
for z ∈ D:

(1) Q(z) := δzq′(z)qλ−2(z) be starlike (univalent),
(2) Re(H(z)) > 0, where

H(z) =
γ(λ− 1)

δ
+
αλ

δ
q(z) +

β(λ+ 1)

δ
q2(z) + (λ− 2)

zq′(z)

q(z)
+

(
1 +

zq′′(z)

q′(z)

)
.

If p(z) ∈ A0 satisfies

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p2(z)

)
≺ qλ(z)

(
α+ βq(z) +

γ

q(z)
+ δ

zq′(z)

q2(z)

)
,

then p(z) ≺ q(z) and q(z) is the best dominant.

The proof of this theorem is similar to that of Theorem 2.1 and therefore
omitted.

Remark 2.25. Let λ = α = γ = β = 0 and δ = 1 in Theorem 2.24, we have the
following result of Ravichandran and Kumar [16].

Corollary 2.26. Let q(z) ∈ A0 be univalent in D. Let zq′(z)/q(z)2 be starlike.
If p(z) ∈ A0 satisfies

zp′(z)

p(z)2
≺ zq′(z)

q(z)2
,

then p(z) ≺ q(z). The dominant q is the best dominant.

We take α, β, γ and δ to be real numbers, for proving all the following results.
For the next result, we further assume β = 0 and let q(z) be the function defined
by q(z) = (1+(1−2ν)z)/(1−z) for 0 ≤ ν < 1 in Theorem 2.24, then we obtain
function Q as follows:

Q(z) =
2(1− α)z

(1− z)λ(1 + (1− 2ν)z)2−λ
.

Proceeding as in Corollary 2.4, we have Q(z) starlike (univalent) in D for 1 ≤
λ ≤ 2. If we take z = eiθ (θ ∈ [−π, π]), we have

Re

(
γ(λ− 1)

δ
+
αλ

δ
q(z) + (λ− 2)

zq′(z)

q(z)
+ 1 +

zq′′(z)

q′(z)

)
= 1 +

γ(λ− 1)

δ
+
αλ

δ
ν + (λ− 2)(1− 2ν)B(θ)− λ

2
=: S(θ),(21)

where B(θ) is as defined in the proof of Corollary 2.4 and let 1+2α(1−ν)/δ > 0
as per Remark 2.2. In order to apply Theorem 2.24, we need to find the range
of the parameters such that S(θ) ≥ 0. For this we consider two cases:
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Case 1: Consider 0 ≤ ν ≤ 1/2, then (1− 2ν) ≥ 0. Since 1 ≤ λ ≤ 2, we take
into account the maximum value of B(θ). Thus, we get

S(θ) ≥ λ
(
γ

δ
+
αν

δ
+

1− 2ν

2(1− ν)
− 1

2

)
+ 1− γ

δ
− 1− 2ν

1− ν
=: λ(r) + s.

It suffices to find the conditions on the parameters for which λ(r) + s ≥ 0. For
this, either (i) we show

λ ≥
γ
δ + 1−2ν

1−ν − 1
γ
δ + αν

δ + 1−2ν
2(1−ν) −

1
2

,(22)

which is a valid expression only if (γ + αν)/δ > ν/(2(1− ν)). Since 1 ≤ λ, the
inequality (22) holds if 1 + 2α(1− ν)/δ > 0, or (ii) let r = 0, simple calculation
yields S(θ) ≥ 0.

Case 2: Consider 1/2 ≤ ν < 1, then (1 − 2ν) ≤ 0. Therefore, we take into
account the minimum value of B(θ). Thus, we get

S(θ) ≥ λ
(
γ

δ
+
αν

δ
− 1− 2ν

2ν
− 1

2

)
+ 1− γ

δ
+

1− 2ν

ν
.

Again, proceeding as in the case 1, we assume (γ + αν)/δ ≥ (1 − ν)/(2ν)
and α/δ > −1/(2(1 − ν)). Thus, α/δ ≥ max(−1/(2(1 − ν)); (ν − 1)/2ν2) =
(ν − 1)/(2ν2). Hence the result follows as:

Corollary 2.27. Let 0 ≤ ν < 1 and 1 ≤ λ ≤ 2. (i) For 0 ≤ ν ≤ 1/2, let
1 + 2(1− ν)α/δ > 0 and (γ + να)/δ ≥ ν/(2(1− ν)). (ii) For 1/2 ≤ ν < 1, let
2α/δ > (ν − 1)/ν2 and (γ + να)/δ ≥ (1− ν)/(2ν). If p(z) ∈ A0 satisfies

pλ(z)

(
α+

γ

p(z)
+ δ

zp′(z)

p2(z)

)
≺
(

1 + (1− 2ν)z

1− z

)λ(
α+

γ(1− z)
1 + (1− 2ν)z

+
2δ(1− ν)z

(1 + (1− 2νz))2

)
,

then Re p(z) > ν.

Taking ν = 0 in the above Corollary 2.27, we have the following result:

Corollary 2.28. Let 1 + 2α/δ > 0, γδ ≥ 0 and 1 ≤ λ ≤ 2. If p(z) ∈ A0

satisfies

pλ(z)

(
α+

γ

p(z)
+ δ

zp′(z)

p2(z)

)
≺
(

1 + z

1− z

)λ(
α+ γ

1− z
1 + z

+
2δz

(1 + z)2

)
,

then Re p(z) > 0.

Taking ν = 1/2 in Corollary 2.27, we obtain the following result:

Corollary 2.29. Let 1 +α/δ > 0, (2γ+α)/δ ≥ 1 and 1 ≤ λ ≤ 2. If p(z) ∈ A0

satisfies

pλ(z)

(
α+

γ

p(z)
+ δ

zp′(z)

p2(z)

)
≺
(

1

1− z

)λ
(α+ γ(1− z) + δz) ,
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then Re p(z) > 1/2.

Remark 2.30. By taking α = γ = 0 and λ = 1 in Corollary 2.6, or by taking
λ = 2, γ = 0 and α = β in Corollary 2.28, we have the following result of
Nunokawa et al. [14]:

Corollary 2.31. Let 1 + 2β/δ > 0. If p(z) ∈ A0 satisfies

βp(z)2 + δzp′(z) ≺ β
(

1 + z

1− z

)2

+
2δz

(1− z)2
,

then Re p(z) > 0.

Corollary 2.32. If p(z) ∈ A0 satisfies

p(z) +
zp′(z)

p(z)
≺ R(z),

where R is the open door mapping, then p(z) ≺ (1 + z)/(1− z).

Proof. Let λ = γ = α = 0 and β = δ = 1 in Corollary 2.6 or by assuming
λ = α = δ = 1 and γ = 0 in Corollary 2.28, we get

p(z) +
zp′(z)

p(z)
≺ 1 + z

1− z
+

2z

1− z2
=: R(z).

This completes the proof. �

Remark 2.33. Corollary 2.32 is the result obtained by Nunokawa et al. [14].

For the following result, we one again assume β = 0 in Theorem 2.24.

Corollary 2.34. Let αλ/δ ≥ 0, γ(λ− 1)/δ ≥ 0 , 0 < η ≤ 1 and −1 < ηλ ≤ 2.
If p(z) ∈ A0 satisfies

pλ(z)

(
α+

γ

p(z)
+ δ

zp′(z)

p2(z)

)
≺
(

1 + z

1− z

)ηλ(
α+ γ

(
1− z
1 + z

)η
+

2δηz

(1− z)1−η(1 + z)1+η

)
=: h(z),

(23)

then p(z) ≺ ((1 + z)/(1− z))η.

Proof. Let q(z) = ((1 + z)/(1− z))η in Theorem 2.24, then Q(z) is given by

Q(z) =
2δηz

1− z2

(
1 + z

1− z

)η(λ−1)
and

zQ′(z)

Q(z)
= 1 +

2z2

1− z2
+

2η(λ− 1)z

1− z2
=: K(z).
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Since K(z) is lower bounded for −1 < ηλ ≤ 2, we evaluate K(z) on the
boundary of D which implies Re K(eiθ) ≥ 0. Thus, Q(z) is starlike (univalent)
in D. Also, from condition (2) of Theorem 2.24, we have

Re(H(z)) = Re

(
1 +

γ(λ− 1)

δ
+
αλ

δ

(
1 + z

1− z

)η
+

2z(z + (λ− 1)η)

1− z2

)
.

Some computation shows that for z = eiθ (θ ∈ [−π, π]), we obtain

Re(H(eiθ)) =
γ(λ− 1)

δ
≥ 0,

when αλ/δ, γ(λ− 1)/δ ≥ 0. �

Taking η = 1 in Corollary 2.34, we obtain the following result:

Corollary 2.35. Let αλ/δ, γ(λ − 1)/δ ≥ 0 and −1 < λ ≤ 2. If p(z) ∈ A0

satisfies

pλ(z)

(
α+

γ

p(z)
+ δ

zp′(z)

p2(z)

)
≺
(

1 + z

1− z

)λ(
α+ γ

(
1− z
1 + z

)
+

2δz

(1 + z)2

)
,

then Re p(z) > 0.

Here, we derive the argument relation between

pλ(z)
(
α+ γ/p(z) + δzp′(z)/p2(z)

)
and h(z), as defined by the equation (23), such that the subordination (23)
holds for 0 < η ≤ 1. We assume −1 < λ ≤ 0.

Corollary 2.36. Let α ≥ −δ > 0 and γ ≥ 0. If p(z) ∈ A0 satisfies∣∣∣∣arg

(
pλ(z)

(
α+

γ

p(z)
+ δ

zp′(z)

p2(z)

))∣∣∣∣ < π

2
ζ,(24)

where
(i) ζ = −ηλ whenever 0 < η ≤ 1/2,
(ii) ζ = −ηλ+ (2/π) tan−1(−δη cos(ηπ/2)/α) whenever 1/2 ≤ η ≤ 1, then

| arg p(z)| < π

2
η.

Proof. A calculation shows that

h(eiθ) = (i cot θ/2)
ηλ

(
α+ γ (i cot θ/2)

−η
+ i

δη

sin θ
(i cot θ/2)−η

)
= | cot θ/2|ηλe±iηλπ/2

(
α+ γ| cot θ/2|−ηe∓iηπ/2

+
δη

sin θ
| cot θ/2|−ηeiπ/2(1∓η)

)
.

As the ‘+’ sign comes for 0 < θ < π and the ‘−’ sign comes for −π < θ < 0.
Also, we observe that the real and the imaginary part of h(eiθ) is an even and
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odd function of θ, respectively. Thus, we will consider here −π < θ < 0. Then,
we have the following

arg h(eiθ) = −π
2
ηλ+ tan−1

(
γ| cot(θ/2)|−η sin(ηπ/2) + δη

sin θ cos(ηπ/2)

α+ γ| cot(θ/2)|−η cos(ηπ/2)− δη
sin θ sin(ηπ/2)

)

≥ −π
2
ηλ+ tan−1

(
γs−η sin(ηπ/2)− δη cos(ηπ/2)

α+ γs−η cos(ηπ/2)

)
=: −π

2
ηλ+ tan−1(g(s))

for α ≥ −δ >, γ ≥ 0 and where s = | cot(θ/2)|, (s1 ≤ s ≤ s2), s1 → 0 and
s2 →∞. Now, we consider two cases:

Case 1: Let 0 < η ≤ 1/2, then

g(s) ≥
(

γs−η sin(ηπ/2)

α+ γs−η cos(ηπ/2)

)
≥

(
γs−η2 sin(ηπ/2)

α+ γs−η2 cos(ηπ/2)

)
≈ 0.

Case 2: Let 1/2 ≤ η ≤ 1, then

g(s) ≥
(
γs−η cos(ηπ/2) + δη cos(ηπ/2)

α+ γs−η cos(ηπ/2)

)
=: l(s)

as α ≥ −δ, then

l(s) ≥

(
γs−η2 cos(ηπ/2) + δη cos(ηπ/2)

α+ γs−η2 cos(ηπ/2)

)
≈ −δη cos(ηπ/2)

α
.

Thus from both the cases, we get arg(h(eiθ)) ≥ ζπ/2, where ζ is as given in the
hypothesis. We observe that condition (24) concludes that the subordination
(23) holds. Also, the hypothesis of Corollary 2.34 gets satisfied, as a result we
get

p(z) ≺ ((1 + z)/(1− z))η,
equivalently | arg(p(z))| < ηπ/2. This completes the proof. �

The next result follows from Theorem 2.24 by taking q(z) = eµz. Again
assume β = 0.

Corollary 2.37. Let |(λ−1)µ| ≤ 1, αλ/δ ≥ 0 and γ(λ−1)/δ ≥ 0. If p(z) ∈ A0

satisfies

pλ(z)

(
α+

γ

p(z)
+ δ

zp′(z)

p2(z)

)
≺ eµλz

(
α+

γ

eµz
+ δ

µz

eµz

)
,

then p(z) ≺ eµz, where µ is a non-zero real number such that |µ| ≤ 1.

The proof of this corollary is on the similar lines of the proof of Corollary 2.16
and therefore omitted.

Taking µ = 1 in the above Corollary 2.37, we obtain the following result:
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Corollary 2.38. Let |λ − 1| ≤ 1, αλ/δ ≥ 0 and γ(λ − 1) ≥ 0. If p(z) ∈ A0

satisfies

pλ(z)

(
α+

γ

p(z)
+ δ

zp′(z)

p2(z)

)
≺ eλz

(
α+ γe−z + δze−z

)
,

then p(z) ≺ ez.

Corollary 2.39. Let −1 ≤ λ ≤ 3, αλ/δ ≥ 0, β(λ + 1)/δ ≥ 0 and −1/4 <
γ/δ ≤ 0. If p(z) ∈ A0 satisfies

pλ(z)

(
α+ βp(z) +

γ

p(z)
+ δ

zp′(z)

p2(z)

)
≺ (1 + z)

λ/2

(
α+ β

√
1 + z

+
γ√

1 + z
+

δz

2(1 + z)3/2

)
,

then p(z) ≺
√

1 + z.

Proof. The result follows from Theorem 2.24 by taking q(z) =
√

1 + z.
Clearly, Q(z) = δ(1 + z)(λ−3)/2z/2 is starlike (univalent) in z ∈ D on the

similar lines of the proof of Corollary 2.18. Also, we have

Re

(
1 +

γ(λ− 1)

δ
+
αλ

δ
q(z) +

β(λ+ 1)

δ
q2(z) + (λ− 2)

zq′(z)

q(z)
+
zq′′(z)

q′(z)

)(25)

= Re

(
1 +

γ(λ− 1)

δ
+
αλ

δ

√
1 + z +

β(λ+ 1)

δ
(1 + z) +

λ

4
+ (λ− 3)

z

2(1 + z)

)
≥ 1 +

γ(λ− 1)

δ
+
λ− 3

4
= λ

(
γ

δ
+

1

4

)
− γ

δ
+

1

4
≥ 0,

by proceeding as in the proof of Corollary 2.18 for the given range of constants
in the hypothesis. And hence the result. �

Taking β = 0 in Theorem 2.24, we have the following result:

Corollary 2.40. Let αδ ≥ 0 and 0 ≤ λ ≤ 2. For −1 < B < A ≤ 1, if
(1 + AB)(1 − A)(1 − B) > 8AB, let (B − A)/((1 + A)(1 + B)) ≤ γ/δ ≤
2(B −A)/((1 +A)(1 +B)). Suppose p(z) ∈ A0 satisfies

pλ(z)

(
α+

γ

p(z)
+ δ

zp′(z)

p2(z)

)
≺
(

1 +Az

1 +Bz

)λ(
α+ γ

(
1 +Bz

1 +Az

)
+ δ

(A−B)z

(1 +Az)2

)
,

then p(z) ≺ (1 +Az)/(1 +Bz).

Proof. The result is followed by taking q(z) = (1 + Az)/(1 + Bz) in Theo-
rem 2.24. Then, we have

Q(z) =
δz(A−B)

(1 +Az)2−λ(1−Bz)λ
,
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and

(26)
zQ′(z)

Q(z)
= 1 + (λ− 2)

Az

1 +Az
− λBz

1 +Bz
, 0 ≤ λ ≤ 2,

which is clearly bounded below for the mentioned range of λ. Thus, computing
equation (26) on the boundary of D, we get Q(z) is starlike (univalent) for the
given range of λ. Also, from condition (2) of Theorem 2.24, we have Re(H(z))
as follows:

Re

(
γ(λ−1)

δ
+
αλ

δ

(
1+Az

1+Bz

)
+(λ−2)

(
A−Bz

(1+Az)(1+Bz)

)
+

(
1−Bz
1+Bz

))
.(27)

Now, by using Lemmas 2.19, 2.20 and 2.21, we obtain

Re(H(z)) ≥ γ(λ− 1)

δ
+
αλ

δ

(
1−A
1−B

)
+

(
1− |B|
1 + |B|

)
+ (λ− 2)

(
A−B

(1 +A)(1 +B)

)
(αδ ≥ 0)

= λ

(
γ

δ
+

A−B
(1 +A)(1 +B)

)
+
αλ

δ

(
1−A
1−B

)
+

1− |B|
1 + |B|

−
(
γ

δ
+

2(A−B)

(1 +A)(1 +B)

)
.(28)

To achieve the desired result it is required to show that equation (28) becomes
greater than or equal to 0, which is possible when (B−A)/((1 +A)(1 +B)) ≤
γ/δ ≤ (2(B −A))/((1 +A)(1 +B)). This completes the proof. �

3. Sufficient conditions

On substituting p(z) = zf ′(z)/f(z) in Corollaries 2.6, 2.13, 2.28 and 2.35,
respectively, we have the following example.

Example 3.1. The following are sufficient conditions for f ∈ S∗.
(i) Let (a) 1 + 2β/δ > 0, γδ ≤ 0, αδ ≥ 0 and 0 ≤ λ ≤ 1, or (b) αλ/δ ≥ 0,

β(λ+ 1)/δ ≥ 0, γ(λ− 1)/δ ≥ 0 and |λ| ≤ 1. If f ∈ A satisfies(
zf ′(z)

f(z)

)λ(
α+ γ

f(z)

zf ′(z)
+ (β − δ)zf

′(z)

f(z)
+ δ

(
1 +

zf ′′(z)

f ′(z)

))
≺
(

1 + z

1− z

)λ(
α+ β

(
1 + z

1− z

)
+ γ

(
1− z
1 + z

)
+

2δz

1− z2

)
.

(ii) Let (a) 1+2α/δ > 0, γδ ≥ 0 and 1 ≤ λ ≤ 2, or (b) αλ/δ, γ(λ−1)/δ ≥ 0
and −1 ≤ λ ≤ 2. If f(z) ∈ A satisfies(

zf ′(z)

f(z)

)λ(
α+ γ

f(z)

zf ′(z)
+ δ

(
1 + zf ′′(z)/f ′(z)

zf ′(z)/f(z)
− 1

))
≺
(

1 + z

1− z

)λ(
α+ γ

1− z
1 + z

+
2δz

(1 + z)2

)
.
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Remark 3.2. Let α = γ = 0 and λ = 1 in Example 3.1(i)(a). Then we have the
following result of Ravichandran and Kumar [16]:

Corollary 3.3. Let 1 + 2β/δ > 0. If f(z) ∈ A and

zf ′(z)

f(z)

(
(β − δ)zf

′(z)

f(z)
+ δ

(
1 +

zf ′′(z)

f ′(z)

))
≺ β

(
1 + z

1− z

)2

+
2δz

(1− z)2
,

then f(z) ∈ S∗.

Remark 3.4. Let λ = α = γ = 0 and δ = 1 in Example 3.1(ii)(b). Then we
have the following result of Obradowič and Tuneski [15]:

Corollary 3.5. If f(z) ∈ S and

1 + zf ′′(z)/f ′(z)

zf ′(z)/f(z)
≺ 1 +

2z

(1 + z)2
,

then f(z) ∈ S∗.

Kaplan [6] introduced the close-to-convex class CC as follows:

CC =

{
f ∈ A : Re

(
f ′(z)

g′(z)

)
> 0

}
,

where g(z) is convex (univalent) function in D.

Remark 3.6. Let p(z) = 2f ′(z)/(2 + z), α = γ = 0 and λ = 1 in Corollary 2.6,
we get the sufficient condition for f to belong to the class CC, as given below:

Example 3.7. Let 1 + 2β/δ > 0. If f ∈ A satisfies

2f ′(z)

(2 + z)2
(2βf ′(z)− δz) +

2δzf ′′(z)

2 + z
≺ β

(
1 + z

1− z

)2

+
2δz

(1− z)2
,

then f ∈ CC.

As an application of Corollaries 2.17 and 2.38, we have the following example:

Example 3.8. Let f ∈ A. Then following are sufficient conditions for f ∈ S∗e .

(i) Let δ > 0, αλ ≥ −(A+B), where A = β(λ+1)/e ≥ 0, B = γ(λ−1)/e ≥
0 and |λ| ≤ 1. If f satisfies(

zf ′(z)

f(z)

)λ(
α+ γ

f(z)

zf ′(z)
+ (β − δ)zf

′(z)

f(z)
+ δ

(
1 +

zf ′′(z)

f ′(z)

))
≺ eλz

(
γe−z + α+ βez + δz

)
.

(ii) Let |λ− 1| ≤ 1, αλ/δ ≥ 0 and γ(λ− 1) ≥ 0. If f satisfies(
zf ′(z)

f(z)

)λ(
α+ β

zf ′(z)

f(z)
+ γ

f(z)

zf ′(z)
+ δ

(
1 + zf ′′(z)/f ′(z)

zf ′(z)/f(z)
− 1

))
≺ eλz

(
α+ βez + γe−z + δze−z

)
.
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Taking p(z) = zf ′(z)/f(z) in Corollaries 2.7 and 2.29, respectively, we have
the following example:

Example 3.9. Let f ∈ A. Then we have the following sufficient conditions for
f ∈ S∗(1/2).

(i) Let 1 + β/δ > 0, γδ ≤ 0, −1 + (2α + β)/δ ≥ 0 and 0 ≤ λ ≤ 1 and f
satisfies(

zf ′(z)

f(z)

)λ(
α+ γ

f(z)

zf ′(z)
+ (β − δ)zf

′(z)

f(z)
+ δ

(
1 +

zf ′′(z)

f ′(z)

))
≺
(

1

1− z

)λ(
α+ β

1

1− z
+ γ(1− z) +

δz

1− z

)
.

(ii) Let 1 + α/δ > 0, (2γ + α)/δ ≥ 1 and 1 ≤ λ ≤ 2 and f satisfies(
zf ′(z)

f(z)

)λ(
α+ γ

f(z)

zf ′(z)
+ δ

(
1 + zf ′′(z)/f ′(z)

zf ′(z)/f(z)
− 1

))
≺
(

1

1− z

)λ
(α+ (1− z)γ + δz) .

Remark 3.10. Let λ = α = γ = 0, δ = β = 1 and λ = α = δ = 1, γ = 0,
respectively in Example 3.9(i) and (ii), we obtain the following known result
of Marx [9] and Strohhäcker [23].

Corollary 3.11. A convex function is starlike of order 1/2.

Definition. A function f(z) = z+
∑∞
n=2 anz

n is said to be ρ-convex in D if it
is analytic and f(z)f ′(z)/z 6= 0 and also it satisfies

Re

(
ρ

(
1 +

zf ′′(z)

f ′(z)

)
+ (1− ρ)

zf ′(z)

f(z)

)
> 0.(29)

The set of all such functions is denoted by ρ-CV.

Mocanu [12] gave the following result for ρ-convex functions.

Corollary 3.12. Let ρ be an arbitrary real number, and suppose that f(z) is
ρ-convex. If ρ ≥ 1, then f(z) is convex.

Taking λ = α = γ = 0, β = 1 and δ = ρ in Example 3.9(i), we get the
following result:

Corollary 3.13. Let 1/ρ ≥ 1 and if f satisfies

(1− ρ)
zf ′(z)

f(z)
+ ρ

(
1 +

zf ′′(z)

f ′(z)

)
≺ 1 + ρz

1− z
,(30)

then
zf ′(z)

f(z)
≺ 1

1− z
.

The above Definition, Corollaries 3.11, 3.12 and 3.13 yield the following
result:
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Corollary 3.14. A ρ-convex function is starlike of order 1/2 for ρ > 0.

As an application of Corollaries 2.18 and 2.39, respectively, we have the
following example.

Example 3.15. Let f ∈ A. Then following are sufficient conditions for f ∈ S∗L.

(i) Let −2 ≤ λ ≤ 2, γ(λ − 1) ≥ 0, β(λ + 1) ≥ 0, δ > max(0,
√

2γ) and

−(2
√

2γ + δ)/4 < α ≤ −3γ/(2
√

2) and f satisfies(
zf ′(z)

f(z)

)λ(
α+ γ

f(z)

zf ′(z)
+ (β − δ)zf

′(z)

f(z)
+ δ

(
1 +

zf ′′(z)

f ′(z)

))
≺ (1 + z)

λ/2

(
γ√

1 + z
+ α+ β

√
1 + z + δ

(
z

2(1 + z)

))
.

(ii) Let −1 ≤ λ ≤ 3, αλ/δ ≥ 0, β(λ+ 1)/δ ≥ 0 and −1/4 < γ/δ ≤ 0 and f
satisfies(
zf ′(z)

f(z)

)λ(
α+ β

zf ′(z)

f(z)
+ γ

f(z)

zf ′(z)
+ δ

(
1 + zf ′′(z)/f ′(z)

zf ′(z)/f(z)
− 1

))
≺ (1 + z)

λ/2

(
α+ β

√
1 + z +

γ√
1 + z

+
δz

2(1 + z)3/2

)
.

Let p(z) = zf ′(z)/f(z) in Corollaries 2.22 and 2.40. Then we have the
following example.

Example 3.16. Let f ∈ A. Then following are sufficient conditions for f ∈
S∗[A,B], −1 < B < A ≤ 1.

(i) Let 0 6= f ∈ S. Let 0 ≤ λ ≤ 1. If (1 + AB)(1− A)(1− B) > 8AB, let
α/δ ≥ (B−A)/((1+A)(1+B)), β/δ ≥ (A−B)(1−B)/((1−A2)(1+B)).
If f satisfies(

zf ′(z)

f(z)

)λ(
α+ γ

f(z)

zf ′(z)
+ (β − δ)zf

′(z)

f(z)
+ δ

(
1 +

zf ′′(z)

f ′(z)

))
≺
(

1 +Az

1 +Bz

)λ(
α+ (β − δ)

(
1 +Az

1 +Bz

)
+ δ

(A−B)z

(1 +Az)(1 +Bz)

)
.

(ii) Let αδ ≥ 0, and 0 ≤ λ ≤ 2. If (1 + AB)(1 − A)(1 − B) > 8AB, let
(B − A)/((1 + A)(1 + B)) ≤ γ/δ ≤ 2(B − A)/((1 + A)(1 + B)). If f
satisfies(

zf ′(z)

f(z)

)λ(
α+ γ

f(z)

zf ′(z)
+ δ

(
1 + zf ′′(z)/f ′(z)

zf ′(z)/f(z)
− 1

))
≺
(

1 +Az

1 +Bz

)λ(
α+ γ

(
1 +Bz

1 +Az

)
+ δ

(
(A−B)z

(1 +Az)2

))
.

From Corollary 2.23, we get the following example by taking

p(z) = zf ′(z)/f(z).
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Example 3.17. Let f ∈ A. Then following are sufficient conditions for f ∈ SP .

(i) Let β/δ ≥ max(0;−α/δ). If f satisfies(
zf ′(z)

f(z)

)(
α+ (β − δ)zf

′(z)

f(z)
+ δ

(
1 +

zf ′′(z)

f ′(z)

))
≺
(

1 +
2

π2

(
log

1 +
√
z

1−
√
z

)2)(
α+ β

(
1 +

2

π2

(
log

1 +
√
z

1−
√
z

)2
)

+
4δ

π2

√
z

1− z
log

(
1 +
√
z

1−
√
z

))
.

Remark 3.18. As an application of the above results and by Noshiro-Warsch-
awski, an analytic function f is univalent if we substitute p(z) = f ′(z) in
Corollaries 2.6, 2.28, 2.7, 2.29, 2.18, 2.39, 2.23, 2.17, 2.38, 2.13 and 2.35, re-
spectively.
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