• Title/Summary/Keyword: Standby system

Search Result 213, Processing Time 0.03 seconds

Foundation Techniques and Fault-tolerance Tests of Active-Active Duplicated Domain Name Servers (Active-Active 방식의 DNS 서버의 이중화 구축 및 결함내성 시험)

  • Choi, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.90-100
    • /
    • 2013
  • Active-Standby Duplication Techniques are conventionally used for fault-tolerant systems. But in this paper we researched on the Active-Active Duplication Techniques for Fault-tolerant DNS System. Our Active-Active Duplication made the 1st DNS periodically copied to the 2nd DNS and maintained the same status by using Rsync and Crontab. Even though the 1st or the 2nd DNS stops due to some critical errors, the remaining DNS can take over and provide continuous services.

The study on Failover subsystem of SCADA system (SCADA 시스템의 FAILOVER SUBSYSTEM에 관한 연구)

  • Kim, Young-Tae;Cho, Nam-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.835-837
    • /
    • 1999
  • Failover subsystem of computer consists four modes In this paper, These modes will be discussed in more detail. - dual computer mode - failover mode - single computer mode - standby synchronization mode we have suggested the method of dual/redunancy configulation of server computer. Failover is activated by the standby computer, active computer receives a failover request across the inter-computer link immediatly. The active computer controls the scada system and maintains the current state in it's data base and channel system safety.

  • PDF

The optimal system for series systems with warm standby components and a repairable service station

  • Rashad, A.M.;El-Sherbeny, M.S.;Gharieb, D.M.
    • International Journal of Reliability and Applications
    • /
    • v.11 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • This paper deals with the reliability and availability characteristics of three different series system configurations with warm standby components and a repairable service station. The failure time of the primary and warm standby are assumed to be exponentially distributed with parameters ${\lambda}$ and ${\alpha}$ respectively. The repair time distribution of each server is also exponentially distributed with parameter ${\mu}$. The breakdown time and the repair time of the service station are also assumed exponentially distributed with parameters ${\gamma}$ and ${\beta}$ respectively. We derive the reliability dependent on time, availability dependent on time, the mean time to failure, $MTTF_i$, and the steady-state availability $A_i$(${\infty}$) for three configurations and perform comparisons. Comparisons are made for specific values of distribution parameters and of the cost of the components. The three configurations are ranked based on: $MTTF_i$, $A_i$(${\infty}$), and $C_i/B_i$ where $B_i$ is either $MTTF_i$ or $A_i$(${\infty}$).

  • PDF

An Input-Powered High-Efficiency Interface Circuit with Zero Standby Power in Energy Harvesting Systems

  • Li, Yani;Zhu, Zhangming;Yang, Yintang;Zhang, Chaolin
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1131-1138
    • /
    • 2015
  • This study presents an input-powered high-efficiency interface circuit for energy harvesting systems, and introduces a zero standby power design to reduce power consumption significantly while removing the external power supply. This interface circuit is composed of two stages. The first stage voltage doubler uses a positive feedback control loop to improve considerably the conversion speed and efficiency, and boost the output voltage. The second stage active diode adopts a common-grid operational amplifier (op-amp) to remove the influence of offset voltage in the traditional comparator, which eliminates leakage current and broadens bandwidth with low power consumption. The system supplies itself with the harvested energy, which enables it to enter the zero standby mode near the zero crossing points of the input current. Thereafter, high system efficiency and stability are achieved, which saves power consumption. The validity and feasibility of this design is verified by the simulation results based on the 65 nm CMOS process. The minimum input voltage is down to 0.3 V, the maximum voltage efficiency is 99.6% with a DC output current of 75.6 μA, the maximum power efficiency is 98.2% with a DC output current of 40.4 μA, and the maximum output power is 60.48 μW. The power loss of the entire interface circuit is only 18.65 μW, among which, the op-amp consumes only 2.65 μW.

A Study on Power Supply Method Design for Hot Standby Sparing System via Reliability Modeling (신뢰도모델링에 의한 이중계제어기 전원공급방식 설계에 관한 연구)

  • Shin, Duck-O;Lee, Kang-Mi;Lee, Jae-Ho;Kim, Yong-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.527-532
    • /
    • 2007
  • In this paper, we suggest those two design plans for power supply method of Hot Standby Sparing System; one is the plan using MTBF based on Constant Failure Rate, and the plan using Reliability Function is the other. Traditionally, RBD (Reliability Block Diagram) is used for reliability prediction which is required to meet any requirements before system operation. However, the system that has redundancy, such as Hot Standby Sparing System, Is not suitable for system reliability modeling using combination model, such as RBD. In this paper, therefore, we demonstrate that for redundancy controller, redundancy modeling design toward fault occurrence design is more effective to build up a system with higher reliability and achieve the effectiveness of loss cost due to maintenance and failure occurred in operation, rather than combinational modeling design.

Estimators for Parameters Included in Cold Standby Systems with Imperfect Switches

  • Al-Ruzaiza A. S.;Sarhan Ammar M.
    • International Journal of Reliability and Applications
    • /
    • v.6 no.2
    • /
    • pp.65-78
    • /
    • 2005
  • In this paper we derive estimations of the parameters included in the distribution of the lifetime of k-out-of-m cold standby system with imperfect switches. Maximum likelihood and Bayes procedures are followed to get such estimations. Numerical studies, using Monte Carlo simulation method, are given in order to explain how we can utilize the theoretical results derived, and to compare the performance of the two different methods used. The criterion of comparisons is the mean squared errors associated with each estimate.

  • PDF

Smart Multiple-Tap System Based on WiFi for reduction of Standby-Power

  • Jeon, Jeong-woo;Yi, Mira
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.123-129
    • /
    • 2017
  • In this paper, we proposed a smart multiple-tap system which a remote user with smartphone can control multiple-taps in order to reduce standby-power consumption more conveniently when plugged-in electric appliances are turned-off. Recently, several researches of smart multiple-tap using IoT technology has reported. However, in these researches, an additional device like as a server computer is necessary, or multiple-taps could be only remotely controlled by smartphone and not directly controlled by on/off switch. The proposed smart multiple-tap system does not need any additional device only if it has a WiFi router, and it can be used for user as well as remote control using smartphone application and physically direct control using contact switches like existing multiple-taps. Our approach is to develop a smart multiple-tap device capable of WiFi communication can each serve as a server or a client, and can be operated by the hybrid switch combining the on/off contact switch and the relay switch. We implemented the prototype of the proposed system composed of the smart multiple-tap device and the smartphone application, and the test of the prototype validates the proposed system.

Analysis of a 2-Unit Standby Redundant System of Reparable 3-State Devices

  • Park, Young Taek
    • Journal of Korean Society for Quality Management
    • /
    • v.10 no.1
    • /
    • pp.13-15
    • /
    • 1982
  • A device is said to have three states if it has one good state and two mutually exclusive failure modes ; e. g., in one failure mode, it operates when it should not, in the other it doesn't operate when it Should. Some examples of such device include a fluid flow valve, an automatic machine, and an explosive. A Markov model is developed to obtain the availability Function of a 2-unit standby redundant system of such devices.

  • PDF

An active system for unnecessary noise reduction in kitchen range hoods

  • Kim, Eunhee;Jang, Jaechun;Lim, Changmok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.91-96
    • /
    • 2016
  • We have surrounded undesired living noises in our life. One of biggest noises coming out of range hood during cooking in the kitchen. A range hood is one of the most important appliances in the kitchen because it ventilates polluted air out during cooking, and maintains air quality in the kitchen. But current kitchen range hoods bring up some issues; First, the range hoods consume massive amount of standby power not in use condition. Second, current models have designed manual fan operating system with sudden onset of noise with starting. In this paper, we propose an auto control system entire processes from air ventilation to noise reduction. Our system is consist of three parts (Eco-sensors pack, Main Controller and Active Noise Controller); Eco-sensors pack detects air pollution of kitchen areas and sends the detection values to Main Controller. Main Controller determines operation of range hood by detected values. Active Noise Controller is located inside of the range hood. It received starting signals from Main Controller which elicits degrees of polluted air condition and fan operating speed from 1 to 3. Once Active Noise Controller detected the signals, it runs a ventilating fan until new value from Main Controller becomes 0. while the range hood works, A noise cancellation algorithm inside of Active Noise Controller become activated to reduce levels of noise. As a result, the proposed system clearly shows reduction in power consumption include standby power and decreases in levels of noise.

Design and Implementation of Wireless standby Power Control System for Energy Saving (에너지 절감을 위한 무선 대기전력 제어 시스템 설계 및 구현)

  • Sim, Gab-Sig;Jang, Jae-Hyuk
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.5
    • /
    • pp.19-27
    • /
    • 2013
  • This paper implements the standby power control system composed of a master device and slave devices. The standby power is managed by cutting power supply after controlling the relay of a slave device based on the authentication of master device's RFID card. RFID interface and wireless communication module are embedded in a master device, and one master device is linked with many slave devices in wireless. Each slave device executes the operation needed in power control independently. We implements the function of manual power on/off system in a slave device, and the function of user ID enrollment by switch manipulation in a master device. Also this system can communicate bidirectionally in wireless and runs on TinyOS. The result of experiment shows that the user authentication is executed in a master device and this authenticated information is transmitted to a slave device in wireless, and standby power is cutted by controlling the relay of a slave device. Installing this system in a building or an office, we can expect energy saving.