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Abstract. In this paper we derive estimations of the parameters included in the
distribution of the lifetime of k-out-of-m cold standby system with imperfect switches.
Maximum likelihood and Bayes procedures are followed to get such estimations.
Numerical studies, using Monte Carlo simulation method, are given in order to
explain how we can utilize the theoretical results derived, and to compare the
performance of the two different methods used. The criterion of comparisons is the
mean squared errors associated with each estimate.
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1. INTRODUCTION

In reliability modeling problem many researchers have discussed the problem of
modeling reliability for systems with active redundancy property, see for example Chan et
al. (1995), Cramer and Kamps (2000), Mokhlis, N. A. (2001), Sarhan and Abouammoh
(2001a), Sarhan and Abouammoh (2001b) and the references there in.

In general, the system consists of m components is said to be k-out-of-m system if
and only if it works if at least k of its m components are working and fails if m ~k +1
components fail. Indeed there are many applications for the k-out-of-m systems such as an
aircraft with four engines which works if at least two out of its four engines remain
functioning, and a satellite which will have enough power to send signals if not more than
four out of its ten batteries are discharged.

Many other practical situations can be modeled by using k-out-of-m systems such as
quality control problems, inspection procedures and radar detection problems, see
Saperstein (1973, 1975) and Nelson (1978).
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Sarhan and Abouammoh (2002) considered a general form of k-out-of-m system with
independent and non-identical components, cold standby and imperfect switches. They
derived the probability density and reliability functions of this system for the cases
m—k =1land m—-k >1. They deduced the probability density and reliability functions
of one, two and three out of four systems in general. Also, they presented some special
cases for perfect and imperfect switches with identical and non-identical main and standby
components.

Sarhan and El-Gohary (2003) and Sarhan and Tadj (2003) used maximum likelihood
and Bayes methods to estimate the parameters included in 1-out-of-2:G repairable system
with different repair facilities.

Our objective in this paper is to estimate the unknown parameters included in
reliability function of the k-out-of-m system with independent and non-identical
components, cold standby and imperfect switches, when m -k =1. The maximum
likelihood and Bayes procedures are followed to derive such estimators.

The paper is organized as follows. Section 2 presents the notation required and main
assumptions. The likelihood function and maximum likelihood estimators for the
unknown parameters are given in section 3. Bayes procedure is used in section 4 to derive
the Bayes estimators for the unknown parameters. Simulation study and conclusion are
given in section 5.

2. THE MODEL ASSUMPTION

The system considered here is a k-out-of-m system, with k£ = m —1. All components
are s-independent with constant failure rates. There is only one component in standby. The
components are classified into two types: operating and standby. The standby component
is connected to the system via an imperfect switch. The system starts operating with
k = m—1 main components, while the rest component is in cold standby mode. The
operating components are identical while the standby one may not identical with the
operating ones. Once a component fails among the main components, instantantly the
standby component becomes operating. Components do not fail simultaneously and there
is no repair. The failure rate of the operating components is 4, while the failure rate of the
standby component is & and the failure rate of the switchiscr .

Let X be the lifetime of k-out-of-m system, with k =m—1 and f(x) be the

probability density function of X. Sarhan and Abouammoh (2001b) derived the function
f(x) as on the following form

Kl -DA+p+a] .
f(x)=
A-(u+a)
The reliability function of the system takes the following form, Sarhan and
Abouammoh (2001b):

(e renx _1), @.1)

kA
e x

—(u+a-A)x _ _ i
T (0ea) (v a){kxle [(k DA+u+ a]}. (2.2)

R(x) =
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If A =u, that is the operating and standby components are identical, then the
function f(x) becomes ‘

f(x)=@we"‘“(l—e'”)p | @)y

and reliability function becomes

-kAx
e

R(x) =

{(kA+a)-kie*}. @

Our objective in this paper is to estimate the unknown parameters A,z . The
parameter & is assumed to be known.

3. LIKELIHOOD FUNCTION AND MAXIMUM LIKELIHOOD
ESTIMATORS

Given the simple random sample X,,X,,---,X,, say X , from the lifetime of the
underlying system, the likelihood function becomes

L(E) - (kl)n {(k; 1_)?/;'-:1&'; 0{} e-k/lT ]'lll(e—(uﬂz—l)x; _ 1), (3'1)

where T = 2:_1x,. .
The log-likelihood function is given by the following form:

I(x) = n{in(kA) + In((k - DA + g+ @) -In(1 - p - @)}

- kAT + iln(e'(’““")"f _ 1) (3.2)

The first and second partial derivatives of log—likelihooa function can be derived as
in the following forms:

A _n e n gmevn -
oA A Gk-Di+u+a l—(,U+a) £ orraDx

al(x) n n X, o Hra-)x, .
ou (k DA+u+a /1 U-a Z e HraDx _ 1’ .

Fl® _ _n n(k -1)° 2 g-thraDx

o A [(k_l)’l"',u'*'a] [/1 - a] 2[ ~(ura-2)x L q ’ (3.5
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ZI(X) n ' x2 e—(;l+a A)x;
5 2 =, (3.6)
ou [(k -DA+u+af [/1 H- a] [ ~lura-Ayx _1]
Flx)  nk-1) x] e e 37
dAou [(k-DA+u+al [A u- a] 2[—(u+a -Dx _ ] : :
The likelihood equations for A, u are
~(u+a-A)x;
n, n(k -1) n zxie _ kT =0, (38)
27" (k-DA+p+a A- (,u+a) s AR |
~(ura-2)x,
" P - (3.9)
k-DA+u+a A-p-a &eWehn_q
Using equations (3.8) and (3.9), we get
L nk —kT =0
A k-Di+pu+a
which may be written as
k(k -T2 = {n(2k -1) - kT (u+ )} + n(u+a) =0
Solving the above relation with respect to ¢ , we get
U+ a=w(l), (3.10)
where '
(Bk-2)n
AD=—"—-(k-DiA
"= {irin ~

the MLE of A, can be derived by solving the following equation, which can be derived by
substituting from (3.10) into (3.9), with respect to A,

g(A) =4, (3.11)
where
n n X, e-(W(i)-i)xi

n
+ - .
k-DA+w(d) A-w(d) e~ Dx _q

i=

gl)y=4+

(3.12)

Therefore, a simple iteration scheme may be used to compute the fixed point solution
of equation (3.11). From the i-th iteration 4, , the (i+1)-th iteration 4,,,, can be obtained

i+l

as g(4) . The iterative process should be stopped when the pre-assigned ‘stopping
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criterion’ is met. Once 1 , the MLE of A, is obtained, then MLE of x can be obtained

from (3.10) as /1 = w(i) - .

Asymptotic confidence intervals

The confidence intervals of the unknown parameters A,u are derived in this

subsection based on the asymptotic distribution of the MLEs /i,[t The 2x 2 Fisher

information of A, is I(A, 1) = (I i (As ,u)) for i, j =1 and 2. Here

3’I(4,
1,(6,,6,)=-E ) 0, =4,6,=u

40.930 .
Lo
and
n n(k -1)°
I, =— - ’
nEet [k-DAi+u+af [A+u+al e
I, = " - i +n
“ [(k-Di+p+al [L+p+al "
nk-1)
I,=I,= - ,
nooe [(k—l)/1+u+o_f]2 [/1+,u+a]2+m7
where

L[ X7 exple (u+a - )%,

T lexpC (v a-Ax }-1F ||

Therefore, if 8 = (/1, ,u) and 9 = (ﬂ:, ,&), then we have, see Bain (1978),

6-6)——N(o,17(2, ).

Thus, the approximate (1~ ¥)100% confidence intervals for A, i are given respectively

by
’1327/2\/11_11(&/1) , AxZ,, I5(Ap),

Here, Z,, is the upper y /2th percentile of a standard normal distribution.

(3.13)
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4. BAYES ESTIMATORS

Here the Bayes procedure is applied to derive the Bayes estimators for the unknown
parameters A, . So, the following more assumptions are needed:

1. The parameters A, 1 behave as independent random variables.

2. The random variables A, 4 having uniform prior distributions on non-negative
intervals [al,bl] and [az,bz], respectively. Here, a, > 0,b, >0,i=1,2.

3. The loss incurred when the estimators A and 1 are used respectively for A and
M is quadratic. '

Based on the assumptions 1 and 2, the joint prior probability density function (pdf)
of A, u becomes

L ,(luu)e[bl _al]x[b2 _az]’

m(A,p)=3(b, —a,)b, - a,) 4.1)
0, _ otherwise.

The likelihood function (4.1) can be rewritten as in the following form

: LZ
1=k b e e, “2)

wherez, = ze'(’““")"’ ,Ty=1and y, = 21’6{:} Re7e

1si) <-+-<iysn

- The joint posterior pdf of (4, 1) is related with the joint prior pdf of (4, 1) and the
likelihood function (A, i) by the following form, see Martz and Waller (1982),

f”’ [7G #)L(l mdz du

Substituting from (4.2) with (4.3) into the above relation, the joint posterior pdf of
(A, 1) becomes

1, KA ) ur
p(ﬂ,#|1)=7—l{1——~—l )} S, (43)

0 -(u+a
where
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by kA

- rhl-—2
TN e
kA

n ; by by, _ ~(ura) xp ,-AKkT-x;)
+2(-1) 12 faz al/l {1 o) (ﬂm)} e e didu

Under the assumption (3) and using the (4.4), the Bayes estimators for A, u are
respectively given by

} e T didu +

n

~ 1 I
ﬂ, = —}' s ] == --—;-l—- 4.4
1, 47, 4
wherel,, I, are given by
_f f A1 —M— e didu
Hd 4 ,u + Ot)

c ! n+l l ’ ~(uva) y; ,-MkT-2)) did
* Z( 1) lsil<2-<i,sn‘fa2'fal A { lu + a)} ¢ ¢ /J ’

and

L ,1"{ - (ﬂ+a)}ne"‘“d/1dﬂ

kA

\ -1 b by A1 - “(ura) i o= AkT=20) 42 duy
i Z( ) lsi1<2~<i,snj‘azj’a1 “ { j‘ - (:u + a)} ) ‘ g

As it seems, the above integrals have no closed form solutions. One can use
numerical method techniques to derive such integrals.

n

Two sided Bayesian probability intervals

The two sided (1-7)100% Bayesian probability interval, shortly (1 - »)100%
TBPI, of A and u can be obtained using the joint posterior pdf of A and iz, see Martz
and Waller (1982). First, the (1- 7)100% TBPI of A, say (&,,v,), can be obtained by
solving the following two equations with respect to u,,v;:

1 1
Tp(al’uvaz’bz)=7/2: ‘—P(avvl’az’bz)=1_}’/2’
0 I,
where

P(a,,w,a,,b,) = f falﬂ"{ ;+a)} e didu
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n

" w kA
-1 b2 - (@) o= MET=21) g2 A1)
¥ Z ( ) lsil<2~<i,snﬁz 4 { A‘ - (:u + a)} ‘ ‘ g

Also, the (1-7)100% TBPI of u , say (uz,vz), can be obtained by solving the
following two equations with respect to u,,v,:

1 1
—P(a;,b,,a,,u,) = /2, —P(a;;b,a,,v,)=1-7/2,
I, I,

where

P(al,bl,az,w) =j:: :ﬂn{l—z—_-(—];j-‘-—a)} e'm dld,u

n

C w kA
1y} honlio kA | om0 g g,
" Z( ) lsi1<~2<i,snﬁz'fal { A= (,U + a)} ¢ ¢ #

The above systems of equations have no closed form solutions in (ul,vl) and

(uz,vz), respectively. So, we have to use numerical method techniques to calculate the
(1-y)100% TBPI for A and u.

5. NUMERICAL RESULTS AND CONCLUSION

In this section we present two examples based on large simulation studies. In the first
example, we generate a random sample from the underlying model. Then the sample
generated is used to compute both MLE and Bayes estimate of the unknown parameters of
interest. Furthermore, the asymptotic confidence and two sided Bayesian probability
intervals for each parameter are calculated. The two types of estimates are compared
based on the percentage error and the length of the interval estimates for each parameters.
Also, the marginal posterior pdf and marginal posterior cumulative distribution function
(CDF) of each parameter are plotted. The second is presented to study the following: (1)
the influence of the sample size on the estimate of each parameter, (2) compare the two
procedures used to derive each estimate. The criterions for the comparisons are the mean
square errors associated with each estimate.

Example 5.1 The Monte Carlo method is used to generate a random sample from the
underlying model when the exact values of the unknown parameters to be estimated
are A =040, £ =042 and @ =0.05, k=1 and m = 2. The sample with size 10

generated is 1.174, 1.704, 4.266, 3.393, 5.029, 1.322, 5.723, 0.561, 5.019 and 5.841. The
total time on test T = Eixi =34.032and 77 = 201.467. The MLE of the parameters
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are A = 0.588 , 1 =0.538 and the associated percentage errors are 46.92% and 28.024%,
respectively. The Fisher information matrix is:

3 2.036 -2.022
I=10" x .
-2.022 2036

The 95% TCI of A and u are [0.223, 0.953] and [0.173, 0.903], respectively. For

Bayes procedure we assumed the following three different choices of the prior intervals
for Aand u: '

(1) choice I:  [a,,b, ] =[0.01,0.79] and [a,,b, ] = [0.02,0.78],
(2) choice It:  [a,,b, ] = [0.01,1.00] and [a,,b,]=1[0.02,1.00],
(3) choice IL: [a,,b,]=[0.01,1.50] and [a,,b, ] = [0.02,1.70].

Table 1 shows the Bayes estimates, the associated percentage error and the 95%

TBPI of each parameter. The percentage error associated with the estimate 6 of the
parameter & can be computed by the following relation:

PE. - | 6 —exact valueof 6 |

8

x100.
exactvalueof 9

Table 1. The results obtained from Bayes procedure.

Choice Bayes estimate Percentage error 95% TBPI
I | & | 1 | & 2 Gz
I 0.559 | 0.533 | 39.826 | 26.878 | [0.278,0.775] [0.235, 0.770}
I 0.619 | 0.594 | 54.756 | 41.365 | [0.275, 0.965] [0.231, 0.970]
11 0.695 | 0.741 | 73.782 | 76.446 | [0.240, 1.425] [0.212, 1.622]

Figure 1 shows the marginal posterior pdf of A and u for the three choices I, II and

III. Figures 1.1, 1.2 and 1.3 are for A considering the choices I, II and III, respectively,
while figures 1.4, 1.5 and 1.6 are for 1 considering the choices I, II and III, respectively.

Figure 2 shows the corresponding marginal posterior CDF of A and u . Based on the
results obtained above, one can see that:

(1) The percentage errors associated with the MLE of A and u are larger than those
associated with the Bayes estimates of A and u, considering the choice III.

(2) The percentage errors associated with the MLE of A and x4 are smaller than
those associated with the Bayes estimates of A and i, considering both choices I
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and IL
(3) The confidence limits of the A and u become wider when the prior limits of

Aand y become wider.

Thus, for the given sample, Bayes procedure provides better estimates than that
obtained by using the maximum likelihood procedure, in the sense of having smaller
percentage errors and narrow TBPI, when the exact values of parameters lie close to the
middle of limits of the prior intervals of the parameters (choice I). When the prior limits
of the parameters become wider, the maximum likelihood procedure provides better
estimates than Bayes procedure. This conclusion can be confirmed from the plots shown
in figure 1. Since the right tail of the marginal posterior pdf of 4 and u are proportional
with the length of the prior limits of A and i, as it seems for the choices I and IL
Therefore, the Bayes procedure is not recommended unless there is a good enough prior

information about the unknown parameters. Otherwise, the maximum likelihood
procedure is recommended.

Example 5.2 This example is presented to use Monte Carlo simulation method to compare
the performance of the two procedures used based on the mean squared errors and the
average of percentage errors associated with estimates obtained. The simulation is carried
out according to the following scheme:

1. Specify the valuesof k,m, A and u.
Specify the sample size n.
3. Generate a random sample with size n from the lifetime of k-out-of-m cold
standby system. This sample can be generated by using the following steps:
3.1 Generating a random number on the unit interval (0,1), say u.
3.2 Setting R(x) = u in equation (2.2), we get the following equation:
k2 (k-DA+p+a _ k-DA+u+a

A-(u+a) A-(u+a)
3.3  Solving the above equation with respect to y.
3.4 The observed value of X is given by x = —In(y).

—u=0,where y=e¢"

3.5 Repeat steps 3.1 to 3.4 n times, one gets the random sample X, X,," -, X, .

Calculate both MLE and Bayes estimates of the parameters.

Repeat steps 3-4 1000 times.

Compute the mean squared error, say MSE, associated with each parameter.
Repeat steps 2-6 for n=5,10,...,100.

Nowne

Figure 3 shows the MSE associated with MLE and Bayes estimates of the parameters
A and u against n, whenAd =0.40, 4 =042, =0.05, k =1 and m = 2. The prior

intervals Aand g in this example are assumed respectively to be [al,bl] = [0.01,0.79]
and [a,,b,]=[0.02,0.78].
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Figure 3. The MSE associated with Bayes estimates and MLE of A and u against n.

It seems from Figure 3 that

1.

2.

The MSE associated with the Bayes estimates of each parameter does not
influence so much by increasing the sample size.

The MSE associated with the MLE of each parameter decreases dramatically with
increasing the sample size when the sample size is smaller than 30. For the
samples with sizes greater than or equal to 30 and smaller than or equal to 60, the
MSE associated with MLE decreases slowly with increasing the sample size. For
the sample size greater than 60 the MSE associated with MLE approximately
constant.

The MSE associated with Bayes estimate of each parameters is smaller that
associated with the MLE of such parameter for all sample sizes.

The difference between the MSE associated with Bayes estimate and MLE of
each parameter decreases with increasing the sample size, especial when the
sample size is small.

Therefore, one can conclude, as it was expected, that the Bayes estimate is better than
the MLE of unknown parameter, in the sense of having smaller MSE, especially when the
size of the available sample is small.
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