• Title/Summary/Keyword: Standard for dynamic performance

Search Result 281, Processing Time 0.029 seconds

Modeling and Simulation Analysis of Grid-Connected Photovoltaic Generation System in terms of Dynamic behavior (계통연계형 태양광발전시스템의 동특성 모델링 및 모의해석)

  • Kim, Eung-Sang;Kim, Seul-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.127-131
    • /
    • 2005
  • The paper addresses modeling and analysis of a grid-connected photovoltaic generation system (PV system). PSCAD/EMIDC. an industry standard simulation tool for studying the transient behavior of electric power system and apparatus. is used to conduct all aspects of model implementation and to carry out extensive simulation study. An equivalent circuit model of a solar cell has been used for modeling solar array. A PWM voltage source inverter (VSI) and its current control scheme have been implemented. A maximum power point tracking (MPPT) technique is employed for drawing the maximum available energy from the PV array. Comprehensive simulation results are presented to examine PV array behaviors and PV system control performance in response to irradiation changes. In addition, dynamic responses of PV array and system to network fault conditions are simulated and analysed

  • PDF

EVALUATION OF VEHICLE DYNAMIC CONTROL FOR ROLOVER PREVENTION

  • Ungoren, A.Y.;Peng, H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.115-122
    • /
    • 2004
  • Evaluation of active safety control systems usually relies heavily on field testing and is time-consuming and costly. Advances in computer simulations make it possible to perform exhaustive design trials and evaluations before field testing, and promise to dramatically reduce development cost and cycle time. In this paper, a comprehensive simulation-based evaluation procedure is proposed, which combines standard evaluation maneuvers, worst-case techniques, and a driver model for closed-loop path following evaluations. A vehicle dynamic controller (VDC) for a popular Sport Utility Vehicle is evaluated using the proposed procedure. Simulation results show that the proposed procedure can be used to assess the performance of the VDC under various conditions and provides valuable information for the re-design of the VDC.

A Study on Dynamic Test of Safety System Software on Nuclear Power Plant (원자력발전소 안전계통 소프트웨어의 동적시험에 관한 연구)

  • Moon, Chae-Joo;Chang, Young-Hak;Lee, Sun-Sung;Suh, Young
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.213-223
    • /
    • 1999
  • In recently, the safety system software of the nuclear power plant has been verified and validated according to ANSI/IEEE-ANS-7-4.3.2-1982 to improve the reliability. This standard requires that safety-related software should be tested in the static and dynamic environments. In case of Inadequate Core Cooling Monitoring System (ICCMS), the static test procedure and related techniques are developed but the dynamic test procedure and related techniques are not developed. Therefore, this paper discusses the undeveloped techniques, and suggests the dynamic test procedure and the program for generation of test input data. The performance of the program was identified using accident analysis report of Ulchin 3&4 Final Safety Analysis Report (FSAR).

  • PDF

Assessment of seismic strengthening solutions for existing low-rise RC buildings in Nepal

  • Chaulagain, Hemchandra;Rodrigues, Hugo;Spacone, Enrico;Varum, Humberto
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.511-539
    • /
    • 2015
  • The main objective of this study is to analytically investigate the effectiveness of different strengthening solutions in upgrading the seismic performance of existing reinforced concrete (RC) buildings in Nepal. For this, four building models with different structural configurations and detailing were considered. Three possible rehabilitation solutions were studied, namely: (a) RC shear wall, (b) steel bracing, and (c) RC jacketing for all of the studied buildings. A numerical analysis was conducted with adaptive pushover and dynamic time history analysis. Seismic performance enhancement of the studied buildings was evaluated in terms of demand capacity ratio of the RC elements, capacity curve, inter-storey drift, energy dissipation capacity and moment curvature demand of the structures. Finally, the seismic safety assessment was performed based on standard drift limits, showing that retrofitting solutions significantly improved the seismic performance of existing buildings in Nepal.

Performance Requirement of Ship's Speed in Docking/Anchoring Maneuvering

  • Tatsumi, Kimio;Fujii, Hidenobu;Kubota, Takashi;Okuda, Shigeyuki;Arai, Yasuo;Kouguchi, Nobuyoshi;Yamada, Kozaburo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.67-72
    • /
    • 2006
  • Questionnaire survey on performance requirement of ship’s speed such as not only accuracy but also response and robustness were carried out, and the experiments to survey the GPS performances of static and dynamic characteristics were carried out simultaneously. In this paper, the questionnaire survey focusing on docking maneuvering, some analytic results of the survey, the results of GPS performance, and the possibility of adaptation for docking maneuvering on SDME and GPS are discussed. Consequently, from the results of questionnaire survey the performance requirement of ship’s speed in docking/anchoring maneuvering have need under 1cm/sec on the standard deviation, and speed information from GPS was adopted to use maneuvering information in docking/anchoring.

  • PDF

Design of a 99dB DR single-bit 4th-order High Performance Delta-Sigma Modulator (99dB의 DR를 갖는 단일-비트 4차 고성능 델타-시그마 모듈레이터 설계)

  • Choi, Young-Kil;Roh, Hyung-Dong;Byun, San-Ho;Nam, Hyun-Seok;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.25-33
    • /
    • 2007
  • In this paper, a fourth-order single-bit delta-sigma modulator is presented and implemented. The loop-filter is composed of both feedback and feedforward paths. Measurement results show that maximum 99dB dynamic range is achievable at a clock rate of 3.2MHz for 20kHz baseband. The proposed modulator has been fabricated in a $0.18{\mu}m$ standard CMOS process.

Implementation of Nuclear Medicine Dynamic Cardiac Phantom for Clinical Application (임상적용을 위한 핵의학 동적 심장팬텀의 구현)

  • Lee, Joo-Young;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.53-59
    • /
    • 2019
  • In the field of nuclear medicine, the various static phantoms of international standards are used to assess the performance of the nuclear medicine equipment. However, we only reproduced a fixed situation in spite of the movement of the cardiac, and the demands for dynamic situations have been continuously raised. More research is necessary to address these challenges. This study used flexible materials to design the dynamic cardiac phantom, taking into account the various clinical situations. It also intended to reproduce the images through dynamic cardiac flow to confirm the usefulness of the proposed technique. The frame of dynamic cardiac phantom was produced based on the international standard phantom. A nuclear medicine dynamic cardiac phantom was produced rubber material and silicone implemented by 3D printing technique to reproduce endocardium and epicardium movement. Therefore we compared and evaluated the image of a cardiac phantom made of rubber material and a cardiac phantom made of silicone material by 3D printing technique. According to the results of this study, the analysis of the Summed Rest Score(SRS) showed abnormalities in the image of a cardiac phantom made of rubber material at 10, 20, and 30 stroke rates, but the image of a cardiac phantom made of silicone material by 3D printing technique showed normal levels. And the analysis of the Total Perfusion Deficit(TPD) showed that TPD in the image of a cardiac phantom made of rubber material was higher than that of the image of a cardiac phantom made of silicone material by 3D printing technique at 10, 20, and 30 stroke rates. The potential for clinical application of the proposed method was confirmed in the dynamic cardiac phantom implemented with 3D printing technique. It is believed that the objective information secures the reliability of inspection equipment and it contributes to improve the diagnostic value of nuclear medicine.

Standardization Design & Manufacturing of Traction Motor for Urban Transit EMU (도시철도 표준전동차용 견인전동기의 국산화 설계 및 제작)

  • Wang, J.B.;Lee, S.G.;Park, H.J.;Ha, H.S.;Hur, I.G.;Lee, I.W.;Park, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.424-426
    • /
    • 1999
  • In this paper, the design characteristics, the manufacturing process and the results of performance test on the AC traction motor for urban transit standard E.M.U which is newly developed with applying standardization specification will be introduced. It is reviewed that the design and performance analysis on conventional motors considering system correlation and design constraint and the design optimization through an analysis of electro-magnetic, thermal and dynamic properties. The properties of factory products manufactured by 200 Class VPI process exhibit a excellent performance with a lower noise and vibration, higher efficiency and power factor etc.

  • PDF

Stability and Safety Analysis on the Next Generation High-Speed Railway Vehicle (차세대 고속철도의 안정성 및 안전성 해석)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Kim, Ji-Young;Kim, Young-Guk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.245-250
    • /
    • 2010
  • In this work, the stability and safety analysis are carried out to predict the performance of a next generation high-speed railway vehicle (HEMU-400X). Since the safety of the high-speed railway vehicles is very important, it is meaningful to predict the dynamic performance and stability of the railway vehicles using a numerical model at a railway vehicle design step. The critical speed of the dynamic model depending on the conicity of the wheel is calculated in the stability analysis. The critical speed calculated in this analysis is over 400km/h for the conicity value of 0.15, which is determined on the basis of representative international standard, UIC 518. Also, the lateral and vertical accelerations at several points of the same dynamic model are calculated for the safety analysis. In the simulation, the dynamic model runs at the test speed of 440km/h, which is determined considering a maximum target speed, and the total driving distance is 30km. And those estimated values are less than the allowed maximum acceleration values of UIC 518.

Hybrid HMM for Transitional Gesture Classification in Thai Sign Language Translation

  • Jaruwanawat, Arunee;Chotikakamthorn, Nopporn;Werapan, Worawit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1106-1110
    • /
    • 2004
  • A human sign language is generally composed of both static and dynamic gestures. Each gesture is represented by a hand shape, its position, and hand movement (for a dynamic gesture). One of the problems found in automated sign language translation is on segmenting a hand movement that is part of a transitional movement from one hand gesture to another. This transitional gesture conveys no meaning, but serves as a connecting period between two consecutive gestures. Based on the observation that many dynamic gestures as appeared in Thai sign language dictionary are of quasi-periodic nature, a method was developed to differentiate between a (meaningful) dynamic gesture and a transitional movement. However, there are some meaningful dynamic gestures that are of non-periodic nature. Those gestures cannot be distinguished from a transitional movement by using the signal quasi-periodicity. This paper proposes a hybrid method using a combination of the periodicity-based gesture segmentation method with a HMM-based gesture classifier. The HMM classifier is used here to detect dynamic signs of non-periodic nature. Combined with the periodic-based gesture segmentation method, this hybrid scheme can be used to identify segments of a transitional movement. In addition, due to the use of quasi-periodic nature of many dynamic sign gestures, dimensionality of the HMM part of the proposed method is significantly reduced, resulting in computational saving as compared with a standard HMM-based method. Through experiment with real measurement, the proposed method's recognition performance is reported.

  • PDF