• Title/Summary/Keyword: Stable water vapor isotopes

Search Result 5, Processing Time 0.021 seconds

A Review on the Application of Stable Water Vapor Isotope Data to the Water Cycle Interpretation (수증기안정동위원소의 물순환 해석에의 적용에 대한 고찰)

  • Lee, Jeonghoon;Han, Yeongcheol;Koh, Dong-Chan;Kim, Songyi;Na, Un-Sung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.34-40
    • /
    • 2015
  • Studies using stable water vapor isotopes have been recently conducted over the past two decades because of difficulties in analysis and sample collection in the past. Stable water vapor isotope data provide information of the moisture transport from ocean to continent, which are also used to validate an isotope enabled general circulation model for paleoclimate reconstructions. The isotopic compositions of groundwater and water vapor also provide a clue to how moisture moves from soil to atmosphere by evapotranspiration. International Atomic Energy Agency designates the stations over the world to observe the water vapor isotopes. To analyze the water vapor isotopes, a cryogenic sampling method has been used over the past two decades. Recently, two types of laser-based spectroscopy have been developed and remotely sensed data from satellites have the global coverage. In this review, measurements of isotopic compositions of water vapor will be introduced and some studies using the water vapor isotopes will also be introduced. Finally, we will suggest the future study in Korea.

Applications of Cryogenic Method to Water Vapor Sampling from Ambient Air for Isotopes Analysis (수증기 동위원소 측정을 위한 저온채집법에 대한 연구)

  • Kim, Songyi;Han, Yeongcheol;Hur, Soon-Do;Lee, Jeonghoon
    • Ocean and Polar Research
    • /
    • v.38 no.4
    • /
    • pp.339-345
    • /
    • 2016
  • Stable water vapor isotopes have been utilized as a tracer for studying atmospheric global circulations, climate change and paleoclimate with ice cores. Recently, since laser spectroscopy has been available, water vapor isotopes can be measured more precisely and continuously. Studies of water vapor isotopes have been conducted over the world, but it is the early stage in south Korea. For vapor isotopes study, a cryogenic sampling device for water vapor isotopes has been developed. The cryogenic sampling device consists of the dewar bottle, filled with extremely low temperature material and impinger connected with a vacuum pump. Impinger stays put in the dewar bottle to change the water vapor which passes through the inside of impinger into the solid phase as ice. The fact that water vapor has not sampled completely leads to isotopic fractionation in the impinger. To minimize the isotopic fractionation during sampling water vapor, we have tested the method using a serial connection with two sets of impinger device in the laboratory. We trapped 98.02% of water vapor in the first trap and the isotopic difference of the trapped water vapor between two impinger were about 20‰ and 6‰ for hydrogen and oxygen, respectively. Considering the amount of water vapor trapped in each impinger, the isotopic differences for hydrogen and oxygen were 0.33‰ and 0.06‰, respectively, which is significantly smaller than the precision of isotopic measurements. This work can conclude that there is no significant fractionation during water vapor trapping.

Comparison between Total Least Squares and Ordinary Least Squares for Linear Relationship of Stable Water Isotopes (완전최소자승법과 보통최소자승법을 이용한 물안정동위원소의 선형관계식 비교)

  • Lee, Jeonghoon;Choi, Hye-Bin;Lee, Won Sang;Lee, Seung-Gu
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.517-523
    • /
    • 2017
  • A linear relationship between two stable water isotopes, oxygen and hydrogen, has been used to understand the water cycle as a basic tool. A slope and intercept from the linear relationship indicates what kind of physical processes occur during movement of water. Traditionally, ordinary least squares (OLS) method has been utilized for the linear relationship, but total least squares (TLS) method provides more accurate slope and intercept theoretically because isotopic compositions of both oxygen and hydrogen have uncertainties. In this work, OLS and TLS were compared with isotopic compositions of snow and snowmelt collected from the King Sejong Station, Antarctica and isotopic compositions of water vapor observed by Lee et al. (2013) in the western part of Korea. The slopes from the linear relationship of isotopic compositions of snow and snowmelt at the King Sejong Station were estimated to be 7.00 (OLS) and 7.16(TLS) and the slopes of stable water vapor isotopes were 7.75(OLS) and 7.87(TLS). There was a melting process in the snow near the King Sejong Station and the water vapor was directly transported from the ocean to the study area based on the slope calculations. There is no significant difference in two slopes to interpret the physical processes. However, it is necessary to evaluate the slope differences from the two methods for studies for example, groundwater recharge processes, using the absolute slope values.

Moisture Transport Observed by Water Vapor Isotopes in the Vicinity of Coastal Area, Incheon, Korea (수증기안정동위원소를 이용한 해안지역 수분의 이동경로에 관한 연구)

  • Lee, Jeonghoon;Choi, Heejin;Oh, Jinman;Na, Un-Sung;Kwak, Hoje;Hur, Soon Do
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.339-344
    • /
    • 2013
  • Water vapor isotopes can be excellent tools for understanding complex mechanisms in the water cycle and atmospheric hydrological cycle and they can be applied to various fields of paleoclimatology, atmospheric science, hydrogeology, oceanography, and ecohydrology. Thus, studies of global or local transport of water vapor may be able to provide a very useful clue to better understand the movements of water and energy in the atmosphere, hydrosphere and biosphere. In this study, the isotopic compositions of water vapor have been observed for moisture transport during the passage of Typhoon Bolaven at Korea Polar Research Institute (KOPRI), Incheon, in the western part of Korea, from August 27 to August 29, 2012. In the clear sky, the isotopic compositions of water vapor at KOPRI exhibited relatively higher isotopic ratios, which were near isotopic equilibrium with sea surface water (${\delta}^{18}O$=-14‰). On the other hand, a largely depleted isotopic ratios in surface water vapor were observed in association with the passage of Typhoon Bolaven (approximately 10‰ depleted compared to the clear sky). The fact that the isotopic minima in water vapor are encountered during the onset period of the Typhoon Bolaven with increases of relative humidity, which is consistent with, so called, "the amount effect".

Applications of Isotope Ratio Infrared Spectroscopy (IRIS) to Analysis of Stable Isotopic Compositions of Liquid Water (동위원소비 적외선 분광법(IRIS)을 이용한 물 안정동위원소 분석)

  • Jung, Youn-Young;Koh, Dong-Chan;Lee, Jeonghoon;Ko, Kyung-Seok
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.495-508
    • /
    • 2013
  • Recently, stable isotopes (${\delta}^{18}O$ and ${\delta}D$) of water are increasingly analyzed using laser-based technologies. These methods have advantages over Isotope Ratio Mass Spectrometry (IRMS) in that they can be used for in-situ measurements and require much less maintenance and preparation work. Two types of laser-based methods are currently available, which have different analytical principles; OA-ICOS (off-axis integrated cavity output spectroscopy) and WS-CRDS (wavelength-scanned cavity ring-down spectroscopy). In the WS-CRDS instrument, water is vaporized at controlled environment and transferred to an optical cavity by nitrogen carrier gas, and stable isotopic compositions of water vapor are measured using the degree of absorbance of specific wavelengths and the ratios of attenuation time of the laser intensity with the sensitivity of ppb to tens of ppt level. In this study, we introduce the principle of the WS-CRDS technology and the performance results including stability and comparisons with Isotope Ratio Mass Spectrometry (IRMS) and suggest possible applications of various topics in isotope hydrology.