Browse > Article
http://dx.doi.org/10.9719/EEG.2013.46.6.495

Applications of Isotope Ratio Infrared Spectroscopy (IRIS) to Analysis of Stable Isotopic Compositions of Liquid Water  

Jung, Youn-Young (Groundwater department, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Koh, Dong-Chan (Groundwater department, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Lee, Jeonghoon (Department of Science Education, Ewha Womans University)
Ko, Kyung-Seok (Groundwater department, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Publication Information
Economic and Environmental Geology / v.46, no.6, 2013 , pp. 495-508 More about this Journal
Abstract
Recently, stable isotopes (${\delta}^{18}O$ and ${\delta}D$) of water are increasingly analyzed using laser-based technologies. These methods have advantages over Isotope Ratio Mass Spectrometry (IRMS) in that they can be used for in-situ measurements and require much less maintenance and preparation work. Two types of laser-based methods are currently available, which have different analytical principles; OA-ICOS (off-axis integrated cavity output spectroscopy) and WS-CRDS (wavelength-scanned cavity ring-down spectroscopy). In the WS-CRDS instrument, water is vaporized at controlled environment and transferred to an optical cavity by nitrogen carrier gas, and stable isotopic compositions of water vapor are measured using the degree of absorbance of specific wavelengths and the ratios of attenuation time of the laser intensity with the sensitivity of ppb to tens of ppt level. In this study, we introduce the principle of the WS-CRDS technology and the performance results including stability and comparisons with Isotope Ratio Mass Spectrometry (IRMS) and suggest possible applications of various topics in isotope hydrology.
Keywords
stable isotopes; isotope ratio infrared spectroscopy (IRIS); method development; analytical precision;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barthold, F.K., Wu, J., Vache, K.B., Schneider, K., Frede, H.G. and Breuer, L. (2010) Identification of geographic runoff sources in a data sparse region: hydrological processes and the limitations of tracer-based approaches. Hydrological Processes. v.24, p.2313-2327.   DOI   ScienceOn
2 IAEA. (2009) Laser Spectroscopy Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes. Performance Testing and Procedures for Installing and Operating the LGR DT-100 Liquid Water Isotope Analyzer, International Atomic Energy Agency, Vienna, ISSN p.1018-5518.
3 Kerstel, E. and Gianfrani, L. (2008) Advances in laserbased isotope ratio measurements: Selected applications. Applied Physics B, v.92, p.439-449.
4 Lis. G., Wassenaar. L.I. and Hendry. M.J. (2008) High- Precision Laser Spectroscopy D/H and 18O/16O Measurements of Microliter natural Water Samples. Analytical Chemistry, v.80, p.287-293.   DOI   ScienceOn
5 O'Keefe, A. and Deacon, D.A.G. (1988) Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources. Review of Scientific Instruments, v.59, p.2544-2551.   DOI
6 O'Keefe, A., Scherer, J.J. and Paul, J.B. (1999) CW integrated cavity output spectroscopy. Chemical Physics Letters, v.307, p.343-349.   DOI   ScienceOn
7 Lee, K.S. and Lee, I. (1996) Discussions about Sample Preparation Techniques for Oxygen and Hydrogen Isotope Analysis. The Korean Society of Economic and Environmental Geology, v.29, p.207-214.
8 Lyon, S.W., Desilets, S.L.E. and Troch, P.A. (2009) A tale of two isotopes: differences in hydrograph separation for a runoff event when using $\delta{D}$ versus $\delta^{18}O$. Hydrological Processes, v.23, p.2095-2101.   DOI   ScienceOn
9 Morrison, J., Brockwell, T., Merren, T., Fourel, F. and Phillips, A.M. (2001) On-line high-precision stable hydrogen isotopic analyses on nanoliter water samples. Analytical Chemistry, v.73, p.3570-3575.   DOI   ScienceOn
10 Bear, D.S., Paul, J.B., Gupta, M. and O'Keefe, A. (2002) Sensitive absorption measurements in the nearinfrared region using off-axis integrated-cavity-output spectroscopy. Applied Physics B: Lasers and Optics, v.75, p.261-265.   DOI   ScienceOn
11 Berden, G., Peeters, R. and Meijer, G. (2000) Cavity ringdown spectroscopy: Exerimental schemes and applications. International Reviews in Physical Chemistry, v.19, p.565-607.   DOI
12 Berman, E.S.F., Gupta, M., Gabrielli, C., Garland, T. and Mc-Donnell, J.J. (2009) High-frequency field deployable isotope analyzer for hydrological applications. Water Resources Research, v.45, W10201.
13 Bigeleisen, J., Perlman, M.J. and Prosser, H. (1952) Conversion of hydrogenic materials for hydrogen to isotopic analysis. Analytical Chemistry, v.24, p.1356-1357.   DOI
14 Birkel, C., Duun, S.M., Tetzlaff, D. and Soulsby, C. (2010) Assessing the value of high-resolution isotope tracer data in the stepwise development of a lumped conceptual rainfall-runoff model. Hydrological Processes, v.24, p.2335-2348.   DOI   ScienceOn
15 Birkel, C., Duun, S.M., Tetzlaff, D. and Soulsby, C. (2011) Using lumped conceptual rainfall-runoff models to simulate daily isotope variability with fractionation in a nested mesoscale catchment. Advances in Water Resources, v.34, p.383-394.   DOI   ScienceOn
16 Brand, W.A., Geilmann, H., Crosson, E.R. and Rella, C.W. (2009) Cavity ring-down spectroscopy versus hightemperature conversion isotope ratio mass spectrometry: a case study on $\delta^{2}H$ and $\delta^{18}O$ of pure water samples and alcohol/water mixture. Rapid Communications in Mass Spectrometry, v.23, p.1879-1884.   DOI   ScienceOn
17 Penna, D., Stenni, B., Sanda, M., Wrede, S., Bogaard, T.A., Gobbi, A., Borga, M., Fischer, B.M.C., Bonazza, M. and Charova, Z. (2010) On the reproducibility and repeatability of laser absorption spectroscopy measurements for $\delta^{2}H$ and $\delta^{18}O$ isotopic analysis. Hydrology and Earth System Sciences Discussions, v.14, p.1551-1566.   DOI
18 Morville, J., Romanini, D., Kachanov, A.A. and Chenevier, M. (2004) Two schemes for trace detection using cavity ringdown spectroscopy. Applied Physics B, v.78, p.465-476.
19 Moyer, E.J., Sayres, D.S., Engel, G.S., St.Clair, j.M., Keutsch, F.N., Allen, N.T., Kroll, J.H. and Anderson, J.G. (2008) Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy. Applied Physics B, v.92, p.467-474.   DOI
20 Paul, J.B., Lapson, L. and Anderson, J.G. (2001) Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment. Applied Optics, v.40, p.4904-4910.   DOI
21 Scherer, J.J., Paul, J.B., O'Keefe, A. and Saykally, R.J. (1997) Cavity Ringdown Laser Absorption Spectroscopy: History, Development, and Application to Pulsed Molecular Beams. Chemical Reviews, v.97, p.25-51.   DOI   ScienceOn
22 Singleton, G.R., Coplen, T.B., Qi, H. and Lorenz, J.M. (2009) Laser-based stable hydrogen and oxygen analyses: How reliable can measurement results be?. EGU. General Assembly April 19-24.
23 Socki, R.A., Romanek, C.S. and Gibson, E.K. (1999) Online technique for measuring stable oxygen and hydrogen isotopes from microliter quantities of water. Analytical Chemistry, v.71, p.2250-2253.   DOI   ScienceOn
24 Clark I. and Fritz, P. (1997) Environmental Isotopes in Hydrogeology. Lewis Publishers, NewYork, 328p.
25 Broxton, P.D., Troch, P.A. and Lyon, S.W. (2009) On the role of aspect to quantify water transit times in small mountainous catchments. Water Resources Research. v.45, W08427.
26 Chesson, L.A., Bowen, G.J. and Ehleringer, J.R. (2010) Analysis of the hydrogen and oxygen stable isotope ratios of beverage waters without prior water extraction using isotope ratio infrared spectroscopy. Rapid Communications in Mass Spectrometry, v.24, p.3205-3213.   DOI   ScienceOn
27 Crosson, E.R. (2008) WS-CRDS: Precision trace gas analysis and simplified stable isotope measurements. American Laboratory, v.40, p.37-41.
28 Epstein, S. and Mayada, T.K. (1953) Variations of O-18 content of waters from natural sources. Geochimica et cosmochimica acta 4.5, p.213-224.
29 Gehre, M., Hofling, R., Kowski, P. and Strauch, G. (1996) Sample preparation device for quantitative hydrogen isotope analysis using chromium metal. Analytical Chemistry, v.68, p.4414-4417.   DOI   ScienceOn
30 Gupta. P., Noone, D., Galewsky, J., Sweeney, C. and Vaughn, B.H. (2009) Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Communications in Mass Spectrometry, v.23, p.2534-2542.   DOI   ScienceOn
31 Hendry M.J. and Wassenaar L.I. (2009) Inferring heterogeneity in aquitards using high-resolution $\delta{D}$ and $\delta^{18}O$ profiles. Ground Water, v.47, p.639-645.   DOI   ScienceOn
32 West, A.G., Goldsmith, G.R., Brooks, P.D. and Dawson, T.E. (2010) Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters. Rapid Communications in Mass Spectrometry, v.24, p.1948-1954.   DOI   ScienceOn
33 Wahl, E.H., Fidric, B., Rella C.H., Koulikov, S., Kharlamov, B., Tan, S., Kachanov, A.A., Richman, B.A., Crosson, E.R., Paldus, B.A., Kalaskar, S. and Bowling, D.R. (2006) Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of $^{13}C/^{12}C$ in carbon dioxide. Isotopes in environmental and health studies. v.42, p.21-35.   DOI   ScienceOn
34 Wassenaar, L.I., M.J. Hendry, V.L. Chostner, and G.P. Lis. (2008) High resolution pore water $\delta^{2}H$ and $\delta^{18}O$ measurements by H2O(liquid)-H2O(vapor) equilibration laser spectroscopy. Environmental Science and Technology. v.42, p.9262-9267.   DOI   ScienceOn
35 Wassenaar, L.I., Van Wilgenburg, S.L., Larson, K. and Hobson, K.A. (2009) A groundwater isoscape ($\delta{D}$, $\delta^{18}O$) for Mexico. Journal of Geochemical Exploration. v.102, p.123-136.   DOI   ScienceOn
36 Zhao, L., Xiao, H., Zhou, J., Wang, L., Cheng, G., Zhou, M., Yin, L. and McCabe, M.F. (2011) Detailed assessment of isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters. Rapid Communications in Mass Spectrometry, v.25, p.3071-3082.   DOI   ScienceOn