DOI QR코드

DOI QR Code

Comparison between Total Least Squares and Ordinary Least Squares for Linear Relationship of Stable Water Isotopes

완전최소자승법과 보통최소자승법을 이용한 물안정동위원소의 선형관계식 비교

  • 이정훈 (이화여자대학교 과학교육과) ;
  • 최혜빈 (이화여자대학교 과학교육과) ;
  • 이원상 (한국해양과학기술원 부설 극지연구소) ;
  • 이승구 (한국지질자원연구원)
  • Received : 2017.11.22
  • Accepted : 2017.12.22
  • Published : 2017.12.28

Abstract

A linear relationship between two stable water isotopes, oxygen and hydrogen, has been used to understand the water cycle as a basic tool. A slope and intercept from the linear relationship indicates what kind of physical processes occur during movement of water. Traditionally, ordinary least squares (OLS) method has been utilized for the linear relationship, but total least squares (TLS) method provides more accurate slope and intercept theoretically because isotopic compositions of both oxygen and hydrogen have uncertainties. In this work, OLS and TLS were compared with isotopic compositions of snow and snowmelt collected from the King Sejong Station, Antarctica and isotopic compositions of water vapor observed by Lee et al. (2013) in the western part of Korea. The slopes from the linear relationship of isotopic compositions of snow and snowmelt at the King Sejong Station were estimated to be 7.00 (OLS) and 7.16(TLS) and the slopes of stable water vapor isotopes were 7.75(OLS) and 7.87(TLS). There was a melting process in the snow near the King Sejong Station and the water vapor was directly transported from the ocean to the study area based on the slope calculations. There is no significant difference in two slopes to interpret the physical processes. However, it is necessary to evaluate the slope differences from the two methods for studies for example, groundwater recharge processes, using the absolute slope values.

물의 두 안정동위원소인 산소와 수소의 선형관계는 물의 순환을 이해하는 데에 가장 기본으로 사용되는 방법이다. 선형관계의 기울기 및 절편은 물이 각 계를 이동하면서 어떠한 물리적 과정이 일어났는가를 지시할 수 있다. 선형관계를 파악하기 위하여 보통최소자승법(ordinary least squares method, OLS)이 사용되어 왔으나, 산소와 수소동위원소 모두 불확정성을 포함하고 있기 때문에 완전최소자승법(total least squares method, TLS)이 더 정확한 기울기와 절편을 제시할 수 있다. 본 연구에서는 남극 세종기지 주변의 눈과 융설의 안정동위원소 분석값과 Lee et al., (2013)에서 관찰된 국내 서해안의 수증기의 산소와 수소의 안정동위원소값을 이용하여 OLS와 TLS를 비교하였다. 남극 세종기지 눈 안정동위원소의 선형관계에서 기울기는 7.00(OLS), 7.16(TLS)이었으며, 수증기동위원소의 선형관계의 기울기는 7.75(OLS), 7.87(TLS)로 계산되었다. 세종기지 눈 안정동위원소값은 대부분의 눈 시료가 용융이 일어났음을 의미하여, 수증기동위원소 값은 해양에서 기원한 수증기가 직접 이동하였음을 알 수 있다. 두 방법으로 계산된 기울기 값은 물리적인 과정을 해석하는 데에는 큰 차이가 없음을 알 수 있다. 하지만, 지하수의 혼합과정을 이해하는 연구처럼 기울기의 절대값을 이용하는 연구에서는 기울기 값의 차이가 연구결과에 어떻게 영향을 미치는 가에 대한 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus, v.16, p.436-468.
  2. Petras, I. and Bednarova, D. (2010) Total least squares approach to modeling: A Matlab toolbox. Acta Montanistica Slovaca, v.15, p.158-170.
  3. Jung, Y.Y., Koh, D.C., Lee, J. and Ko, K.S. (2013) Applications of isotope ratio infrared spectroscopy (IRIS) to analysis of stable isotopic compositions of liquid water. Econ Environ Geol, v.46, p.495-508. https://doi.org/10.9719/EEG.2013.46.6.495
  4. Kim, S., Han, Y., Hur, S.D. and Lee, J. (2016) Applications of cryogenic method to water vapor sampling from ambient air for isotopes analysis. Ocean Polar Res, v.38, p.339-345. https://doi.org/10.4217/OPR.2016.38.4.339
  5. Kwak, H., Kang, J.H., Hong, S.B., Lee, J., Chang, C., Hur, S.D. and Hong, S. (2015) A study on high-resolution seasonal variations of major ionic species in recent snow near the Antarctic Jang Bogo Station. Ocean Polar Res, v.37, p.127-140. https://doi.org/10.4217/OPR.2015.37.2.127
  6. Lee, J., Choi, H., Oh, J., Na, U.S., Kwak, H. and Hur, S.D. (2013) Moisture transport observed by water vapor isotopes in the vicinity of coastal area, Incheon, Korea. Econ Environ Geol, v.46, p.339-344. https://doi.org/10.9719/EEG.2013.46.4.339
  7. Lee, J., Feng, X., Faiia, A.M., Posmentier, E.S., Kirchner, J.W., Osterhuber, R. and Taylor, S. (2010) Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice. Chem Geol, v.270, p.126-134. https://doi.org/10.1016/j.chemgeo.2009.11.011
  8. Lee, J., Feng, X., Posmentier, E.S., Faiia, A.M. and Taylor, S. (2009) Stable isotopic exchange rate constant between snow and liquid water. Chem Geol, v.260, p.57-62. https://doi.org/10.1016/j.chemgeo.2008.11.023
  9. Lee, J., Han, Y., Ham, J.Y. and Na, U.S. (2015) A study of stable isotopic variations of Antarctic snow by albedo differences. Ocean Polar Res, v.37, p.141-147. https://doi.org/10.4217/OPR.2015.37.2.141
  10. Lee, K.S., Wenner, D.B. and Lee, I. (1999) Using H- and O-isotopic data for estimating the relative contributions of rainy and dry season precipitation to groundwater: example from Cheju Island, Korea. J Hydrol, v.222, p.65-74. https://doi.org/10.1016/S0022-1694(99)00099-2
  11. Markovsky, I. and Van Huffel, S. (2007) Overview of total least-squares methods. Signal Process, v.87, p.2283-2302. https://doi.org/10.1016/j.sigpro.2007.04.004