• Title/Summary/Keyword: Stable DC

Search Result 406, Processing Time 0.031 seconds

Analysis of temperature effects on DC parameters of AlGaAs/GaAs HBT (AlGaAs/GaAs HBT의 DC 파라미터에 미치는 온도영향의 해석)

  • 김득영;박재홍;송정근
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.39-46
    • /
    • 1996
  • In AlGaAs/GaAs HBT the temperature dependence of DC parameters was investigated over the temperature range between 95K and 580K. The temperature dependence of DC parameters depends on the relative contribution of each of the current components suc as emitter-injection-current, base-injection-current, bulk recombination current, interface recombination curretn, thermal generation ecurrent and avalanche current due to impact ionization within the collector space charge layer in a specific temperature. In this paper we investigated the temperature effects on DC parameters such as V$_{BE,ON}$ current gain, input and output characteristics, V$_{CE, OFF}$, R$_{E}$, R$_{C}$ and analyzed the origins, and extracted the qualitativ econditions for a stable HBTs against the temperature variation. Finally, in order to keep HBTs stable with respect to the variation of temperature, the valance-band-energy-discontinuity at emitter-base heterojunction should be large enough to enhance the effect of carrier suppression at a relatively high temperature. In addition the recombination centers, especially around collector junction, should be removed and the area of emitter and collector junction should be identical as well.

  • PDF

DC Sputtering Process of 2-Dimensional Tungsten Disulfide Thin Films on Soda-Lime Glass Substrates (DC 스퍼터링을 이용한 소다라임 유리 기판상에 2차원 황화텅스텐 박막 형성 공정)

  • Ma, Sang Min;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.31-35
    • /
    • 2018
  • Tungsten disulfide($WS_2$) thin films were directly deposited by direct-current(DC) sputtering and annealed by rapid thermal processing(RTP) to materialize two-dimensional p-type transition metal dichalcogenide (TMDC) thin films on soda-lime glass substrates without any complicated exfoliation/transfer process. $WS_2$ thin films deposited at various DC sputtering powers from 80 W to 160W were annealed at different temperatures from $400^{\circ}C$ to $550^{\circ}C$ considering the melting temperature of soda-lime glass. The optical microscope results showed the stable surface morphologies of the $WS_2$ thin films without any defects. The X-ray photoelectron spectroscopy (XPS) results and the Hall measurement results showed stable binding energies of W and S and high carrier mobilities of $WS_2$ thin films.

Reactive Power Control of Single-Phase Reactive Power Compensator for Distribution Line (배전선로용 단상 무효전력 보상기의 무효전력제어)

  • Sim, Woosik;Jo, Jongmin;Kim, Youngroc;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • In this study, a novel reactive power control scheme is proposed to supply stable reactive power to the distribution line by compensating a ripple voltage of DC link. In a single-phase system, a magnitude of second harmonic is inevitably generated in the DC link voltage, and this phenomenon is further increased when the capacity of DC link capacitor decreases. Reactive power control was performed by controlling the d-axis current in the virtual synchronous reference frame, and the voltage control for maintaining the DC link voltage was implemented through the q-axis current control. The proposed method for compensating the ripple voltage was classified into three parts, which consist of the extraction unit of DC link voltage, high pass filter (HPF), and time delay unit. HPF removes an offset component of DC link voltage extracted from integral, and a time delay unit compensates the phase leading effect due to the HPF. The compensated DC voltage is used as feedback component of voltage control loop to supply stable reactive power. The performance of the proposed algorithm was verified through simulation and experiments. At DC link capacitance of 375 uF, the magnitude of ripple voltage decreased to 8 Vpp from 74 Vpp in the voltage control loop, and the total harmonic distortion of the current was improved.

The Double-Output DC-DC Converter Using the Current-Fed Converter (전류환류형 DC-DC콘버터를 이용한 이중출력 회로)

  • 이윤종;김희준;안태영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.451-457
    • /
    • 1989
  • The current-fed DC-DC converter, which is known as the most stable DC-DC converter, has a two-winding reactor in series with the input. In this paper a new double-output DC-DC converter circuit, in which the 2nd winding of the reactor is creating the 2nd output, while the 2nd winding is feeding the energy to the input in the current-fed converter, is propose. The steady state characteristics of the new circuit are clarified and it is found that the maximum value exists in the 2nd output. Furthermore, regulation characteristic is analysed by 'Slope method' and the result shows good agreement with experimental value. The 2nd output voltage regulation is performed by using regulation IC. As a result, we have achieved good regulation characteristics.

  • PDF

Control of Inline Co-Axil Valve using Servo Motor (서보모터를 이용한 Inline Co-axil 밸브 제어)

  • Lee, Joong-Youp;Jung, Tae-Kyu;Lee, Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1115-1119
    • /
    • 2007
  • Five control methods (Speed Control, PID Gain Scheduling, Loop Time Control, Simple PID, Switching Control) have been applied to the control of an Inline Co-axial valve by the simulation of AMESim. The simulation results have shown that the speed control method is the most stable and the fastest way to reach to the set point in the simulation of the flow control. Moreover, It has been found that the five control methods have the almost same characteristics in the power consumption, the counter electromotive force, and the motor angular velocity. According to the analysis results, the fast and stable control characteristics of the speed control method is the most suitable for the flow control using a inline co-axial valve with a DC(BLCD) motor.

  • PDF

A Mathematical Modeling on Battery Charging Circuit for the Power Storage of Wind Power Generation (풍력발전의 전력저장을 위한 베터리 충전회로에 관한 수학적인 모델링)

  • Ko, Seok-Cheol;Lee, Jae;Lim, Sung-Hun;Kang, Hyeong-Gon;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.301-304
    • /
    • 2001
  • Wind power generation system is one of the most useful energy resource using natural environment. One of the biggest problem we encountered is toot the wind speed is fluctuating sharply according to the weather conditions rather than it is stable. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We analyse a battery charging characteristics for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we make a small size model usable in actual wind power generation system of 30kw and make an experiment and confirm its validity.

  • PDF

Buck-Boost DC to DC Converter for Thermoelectric Generator with Constant Output Voltage (열전 모듈의 정전압 출력 시스템을 위한 벅-부스트 DC-DC 변환기)

  • Cho, Sung-Kyu;Park, Soon-Seo;Kim, Ji-Gon;Nam, Ki-Hun;Kim, Shi-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1845-1849
    • /
    • 2010
  • We have proposed and fabricated a Buck-Boost DC to DC Converter for Thermoelectric generator (TEG) with constant output voltage suitable for battery chargers or constant voltage supplies in the range of several watt. The experimental and simulation results have shown that the proposed method allows stable operation with maximum 86% power transfer efficiency. The proposed circuit has a merit in cost and miniaturization of a system compared to conventional MPPT algorithms, because the proposed method adopts only analog circuit without DSP or micro controller unit for calculating peak power point by iterative methods.

Input-Constrained Current Controller for DC/DC Boost Converter

  • Choi, Woo Jin;Kim, Seok-Kyoon;Kim, Juyong;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2016-2023
    • /
    • 2016
  • This paper presents a simple input-constrained current controller for a DC/DC boost converter with stability analysis that considers the nonlinearity of the converter model. The proposed controller is designed to satisfy the inherent input constraints of the converter under a physically reasonable assumption, which is the first contribution of this paper. The second contribution is providing a rigorous proof of the proposed control law, which keeps the closed-loop system along with the internal dynamics stable. The performance of the proposed controller is demonstrated through an experiment employing a 20-kW DC/DC boost converter.

Topology of the Novel High Frequency Insulated Soft Switching PWM DC-DC Converter (새로운 고주파 절전형 소프트 스위칭 PWM DC-DC 컨버터의 토폴로지)

  • Kwon, Soon-Kurl;Suh, Ki-Young;Kim, Ju-Yong;Lee, Su-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.119-124
    • /
    • 2006
  • A novel high frequency insulated soft switching PWM DC-DC converter circuit is proposed and then it is achieved the high-efficiency. This converter does not use the o(citing current of a high frequency transformer but use inductance. Then it realizes a widely stable zero voltage switching operation with the use of a novel ON-OFF control method at synchronized rectification power MOSEFETs of the high frequency insulated transformer secondary. Therefore, it is brought over 97[%] measurement efficiency by proposed DC-DC converter.

A Study on Effective Control Methodology for DC/DC Converter (DC/DC 컨버터의 효율적인 제어기법 연구)

  • Lho, Young Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.756-759
    • /
    • 2014
  • DC/DC converters are commonly used to generate regulated DC output voltages with high-power efficiencies from different DC input sources. The converters can be applied in the regenerative braking of DC motors to return energy back to the supply, resulting in energy savings for the systems at periodic intervals. The fundamental converter studied here consists of an IGBT (Insulated Gate Bipolar mode Transistor), an inductor, a capacitor, a diode, a PWM-IC (Pulse Width Modulation Integrated Circuit) controller with oscillator, amplifier, and comparator. The PWM-IC is a core element and delivers the switching waveform to the gate of the IGBT in a stable manner. Display of the DC/DC converter output depends on the IGBT's changes in the threshold voltage and PWM-IC's pulse width. The simulation was conducted by PSIM software, and the hardware of the DC/DC converter was also implemented. It is necessary to study the fact that the output voltage depends on the duty rate of D, and to compare the output of experimental result with the theory and the simulation.