• Title/Summary/Keyword: Spurious Frequency

Search Result 181, Processing Time 1.369 seconds

Optic Link Performances on EOM′s Biasing in Fiber-radio System (주파수 천이를 이용한 광무선 시스템에서 EOM의 바이어스 방식에 따른 광링크 성능 분석)

  • O, Se-Hyeok;Yang, Hun-Gi;Choe, Yeong-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.128-136
    • /
    • 2001
  • This paper evaluates the performance of an optic link in a frequency conversion based fiber-radio system. The proposed link structure simplifies a BS(base station) via making the MMW(millimeter wave) optical pilot tone generated in the CS(control station) be used in the uplink as well as in the downlink. To acquire the optical pilot tone, an EOM(electro-optic modulator) in the CS is biased in three different ways, i.e., MAB(maximum bias), MIB(minimum bias), QB(quadrature bias). We, depending on the biasing of the EOM, evaluate the link performances in two cases; one is for constant laser source power and the other for constant received DC optical power at a PD(photo detector). Based on the simulation results on the downlink CNR and the uplink SFDR(spurious free dynamic range), we finally deduce the effective EOM biasing for each case.

  • PDF

Broadband Optical Transmitter using Feedforward Compensation Circuit (피드포워드 보상회로를 이용한 광대역 광송신기)

  • Yun, Young-Seol;Lee, Joon-Jae;Moon, Yon-Tae;Kim, Do-Gyun;Choi, Young-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • Linearity is the one of the most important features for analog-optic transmission system. In our research, the available bandwidth for the feed-forward compensation circuit is enhanced by using a 180 hybrid coupler in the circuit. The bandwidth having the decreased 3rd-order intermodulation distortion(IMD3) over 10 dB is extended over 200 MHz with the center frequency of 1.6 GHz. We performed an efficient bandwith measurement for the feed-forward compensation system, which uses the network analyzer instead of the traditional measuring system that uses two RF signal generators and the spectrum analyzer. We identify the usefulness of this method from experimental results. In this study, we used cheap digital-purpose laser diodes for economical aspect, which proves the efficiency of the proposed analog system. The spurious-free dynamic range is improved about 6 dB/Hz.

A Novel Method to Reduce Local Oscillator Leakage (국부발진기에서의 누설신호의 새로운 제거방식)

  • 이병제;강기조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.294-301
    • /
    • 2000
  • One of the most important design parameters in a microwave radio transmitting system is to reduce spurious response from the output spectrum of the transmitting system. A Local oscillator (LO) is seldom totally pure and at the least contain some LO harmonic signals. A LO or any oscillator is a transmitter if provided with a suitable radiator, conduction, or leakage path. Where mixer is employed in the output of the LO mixer generated spurs can be increased by RF amplifier. To reduce LO leakage, notch filter or band pass filter has been conventionally used. In this paper, the leakage reduction(LR) signal, which has the same magnitude and the opposite phase with respect to LO leakage signal, is added to the output of mixer of the wireless LAN system. The LO leakage is reduced by 30 dB more than the conventional methods do. The proposed method is potentially suitable for low-cost, reliable, and simple application of monolithic microwave integrated circuits (MMICs)

  • PDF

A Low-Power 1 Ms/s 12-bit Two Step Resistor String Type DAC in 0.18 ㎛ CMOS Process (0.18 ㎛ CMOS 공정을 이용한 저 전력 1 Ms/s 12-bit 2 단계 저항 열 방식 DAC)

  • Yoo, MyungSeob;Park, HyungGu;Kim, HongJim;Lee, DongSoo;Lee, SungHo;Lee, KangYoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.67-74
    • /
    • 2013
  • A low-power 12-bit resistor string DAC for wireless sensor applications is presented. Two-step approach reduces complexity, minimizes power consumption and area, and increases speed. This chip is fabricated in 0.18-${\mu}m$ CMOS and the die area is $0.76mm{\times}0.56mm$. The measured power consumption is 1.8mW from the supply voltage of 1.8V. Measured SFDR(Spurious-Free Dynamic Range) is 70dB when the sampling frequency is less than 1 MHz.

Novel Model for Nonlinearity of Traveling-Wave Electroabsorption Modulator according to Microwave Characteristics (마이크로파 특성에 따른 진행파형 전계흡수 변조기의 비선형 모델)

  • 윤영설;이정훈;최영완
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.580-587
    • /
    • 2003
  • In this paper, we introduce a novel model to analyze the linearity of a TW-EAM (traveling-wave electroabsorption modulator). The device length, microwave loss (ML), and internal reflection (IR) due to impedance mismatch have effect on the linearity of a TW-EAM. The longer devices have characteristics of lower biases with minimum IMDS (intermodulation distortions). ML decreases the output power as well as the IMD value. Internal reflection has different nonlinear characteristics according to the wavelength of the input frequency and the device length. There is little change in SFDR (spurious-free dynamic range) due to ML or IR. As a result, for a 50 GHz band RF-optical communication system, a 0.8 mm-long TW-EAM with the lowest ML would have better properties by using n, which is caused by impedance, mismatch at the output port.

Design of a Highly Linear Broadband Active Antenna Using a Multi-Stage Amplifier (다중 증폭 회로를 이용한 높은 선형 특성을 갖는 광대역 능동 안테나 설계)

  • Lee, Cheol-Soo;Jung, Geoun-Seok;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1193-1203
    • /
    • 2008
  • An active antenna(AA) can have wider bandwidth and more gain with small antenna size than those of passive antennas. However, AA inherently generates thermal noise and spurious signals from an active device. Moreover, the spurious performance of AA is very important in a highly sensitive receiving system since it is located at the front end of the receiving system. In this study, we developed an AA with $100{\sim}500\;MHz$, having the output P1dB higher than 3 dBm and little spurious signals in real environments. To achieve such performance, we designed an AA with 3-stage amplifier using CD(common drain) FET and 2 BJTs. Its electrical performances were simulated using ADS. The measurement results for typical gain, NF, OIP3, VSWR and P1dB in the required frequency band were 9.7 dBi, 10 dB, 14 dBm, 1.7:1 and 3 dBm respectively. They are in good agreement with simulation results. The unwanted spectrum level of the proposed AA is $10{\sim}30\;dB$ lower than that of the antenna with CS(common source) FET configuration at a west suburban area of Seoul, which shows that the proposed AA can be applicable to a highly sensitive receiving system for detecting unknown weak signals mixed with broadcasting and civilian communication signals.

W-Band MMIC chipset in 0.1-㎛ mHEMT technology

  • Lee, Jong-Min;Chang, Woo-Jin;Kang, Dong Min;Min, Byoung-Gue;Yoon, Hyung Sup;Chang, Sung-Jae;Jung, Hyun-Wook;Kim, Wansik;Jung, Jooyong;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.549-561
    • /
    • 2020
  • We developed a 0.1-㎛ metamorphic high electron mobility transistor and fabricated a W-band monolithic microwave integrated circuit chipset with our in-house technology to verify the performance and usability of the developed technology. The DC characteristics were a drain current density of 747 mA/mm and a maximum transconductance of 1.354 S/mm; the RF characteristics were a cutoff frequency of 210 GHz and a maximum oscillation frequency of 252 GHz. A frequency multiplier was developed to increase the frequency of the input signal. The fabricated multiplier showed high output values (more than 0 dBm) in the 94 GHz-108 GHz band and achieved excellent spurious suppression. A low-noise amplifier (LNA) with a four-stage single-ended architecture using a common-source stage was also developed. This LNA achieved a gain of 20 dB in a band between 83 GHz and 110 GHz and a noise figure lower than 3.8 dB with a frequency of 94 GHz. A W-band image-rejection mixer (IRM) with an external off-chip coupler was also designed. The IRM provided a conversion gain of 13 dB-17 dB for RF frequencies of 80 GHz-110 GHz and image-rejection ratios of 17 dB-19 dB for RF frequencies of 93 GHz-100 GHz.

Output Noise Reduction Technique Based on Frequency Hopping in a DC-DC Converter for BLE Applications

  • Park, Ju-Hyun;Kim, Sung Jin;Lee, Joo Young;Park, Sang Hyeon;Lee, Ju Ri;Kim, Sang Yun;Kim, Hong Jin;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.371-378
    • /
    • 2015
  • In this paper, a different type of pulse width modulation (PWM) control scheme for a buck converter is introduced. The proposed buck converter uses PWM with frequency hopping and a low quiescent.current low dropout (LDO) voltage regulator with a power supply rejection ratio enhancer to reduce high spurs, harmonics and output voltage ripples. The low quiescent.current LDO voltage regulator is not described in this paper. A three-bit binary-to-thermometer decoder scheme and voltage ripple controller (VRC) is implemented to achieve low voltage ripple less than 3mV to increase the efficiency of the buck converter. An internal clock that is synchronized to the internal switching frequency is used to set the hopping rate. A center frequency of 2.5MHz was chosen because of the bluetooth low energy (BLE) application. This proposed DC-DC buck converter is available for low-current noise-sensitive loads such as BLE and radio frequency loads in portable communications devices. Thus, a high-efficiency and low-voltage ripple is required. This results in a less than 2% drop in the regulator's efficiency, and a less than 3mV voltage ripple, with -26 dBm peak spur reduction operating in the buck converter.

Development of the Frequency Synthesizer for Multi-function Radar (다기능 레이더용 주파수합성기 개발)

  • Yi, Hui-min;Choi, Jae-hung;Han, Il-tak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1099-1106
    • /
    • 2018
  • In this paper, we developed and then analyzed the specifications of the frequency synthesizer which was applied to long range MFR (Multi-function Radar). These specifications were able to guarantee the functions and performance of MFR. MFR was the radar system that used phase array for electronically scanning. This frequency synthesizer made various frequency signals including to STALO (Stable Local Oscillator) for MFR. By analyzing the MFR requirements, we choose the optimal frequency synthesis method and then we got the best performance and functionality including to physical size for this system. We designed and fabricated DDS (Direct Digital Synthesizer)-driven Offset-PLL (Phase Locked Loop) synthesizer to meet the requirements which were low phase noise, fast switching time and low spurious. This synthesizer had less than -131dBc/Hz@100kHz phase noise and less than $4.1{\mu}s$ switching time, respectively.

10-Bit 200-MS/s Current-Steering DAC Using Data-Dependant Current-Cell Clock-Gating

  • Yang, Byung-Do;Seo, Bo-Seok
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.158-161
    • /
    • 2013
  • This letter proposes a low-power current-steering digital-to-analog converter (DAC). The proposed DAC reduces the clock power by cutting the clock signal to the current-source cells in which the data will not be changed. The 10-bit DAC is implemented using a $0.13-{\mu}m$ CMOS process with $V_{DD}$=1.2 V. Its area is $0.21\;mm^2$. It consumes 4.46 mW at a 1-MHz signal frequency and 200-MHz sampling rate. The clock power is reduced to 30.9% and 36.2% of a conventional DAC at 1.25-MHz and 10-MHz signal frequencies, respectively. The measured spurious free dynamic ranges are 72.8 dB and 56.1 dB at 1-MHz and 50-MHz signal frequencies, respectively.