• Title/Summary/Keyword: Spray Control

Search Result 830, Processing Time 0.039 seconds

Studies on the Development of Accelerating Measures of Establishment of Vegetation on Bare Slopes (황폐산지(荒廢山地)의 속성녹화공법개발(速成綠化工法開發)에 관(關)한 연구(硏究))

  • Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.24 no.1
    • /
    • pp.1-24
    • /
    • 1974
  • A national programme of erosion control for soil and water conservation needs to be based on factual information about rates and quantities of soil erosion and of water runoff. The best and simplest way of reducing sedimentation pollution is to prevent or control the erosion at its sources. Steeply sloping earth banks are liable to both surface erosion and land-slides and the key to the control of these form of erosion lies with drainages and dense vegetation establishment including surface mulching on the slopes. Micro-plots having $1.6m^2$ (1 metre in width and 1.6 metres in slope length, and 1:1.2 in gradient) of banking slopes on the coarse sand soil are used to establish the order of magnititude of the difference in controlling of soil erosion and water runoff, and in potentiality of execution in consideration of the values of landscapes, performed on the 2 repetetions of six-experiment plots consisted of five surface mulches including seedings and one bare slope as a control treatment. The main results obtained may be summarized as follows: 1. The significant difference is realized in the quantities of soil erosion between the measures of six treatments. 2. Excepting the differences between treatment III and VI, the significant difference is realized in the rate of surface runoff between each treatment measures. 3. Both measures of treatment II and IV are recognized as the most effective measures in controlling the soil erosion and water runoff and also in establishing the ground vegetation. (Treatment II is a measures of the coarse straw-mat mulchings on the micro-strip seedings, Treatment IV is a measures of the "SPRAY-ON method" on the micro-strip seedings). In consideration of the potentiality of execution as well as the value of landscapes, the measures of treatment II could be recommendable for establishing the vegetation cover on the denuded gentle slopes in hillsides while the measures of treatment IV could be suitable for accelerating the establishment of vegetation on steeply sloping earth banks and cuts.

  • PDF

Measurement of Operator Exposure During Treatment of Fungicide Difenoconazole on Grape Orchard (포도 과수원에서 살균제 Difenoconazole의 농작업자 노출량 측정)

  • Cho, ll Kyu;Park, Joon Seong;Park, So Hyun;Kim, Su Jin;Kim, Back Jong;Na, Tae Wong;Nam, Hyo Song;Park, Kyung Hun;Lee, Jiho;Kim, Jeong-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.286-293
    • /
    • 2016
  • BACKGROUND: 18% of difenoconazole+iminoctadin triacetate microemulsion (3%+15%) formulation were mixed and sprayed as closely as possible to normal practice on the ten of farms located in the Youngju of South Korea. Patches, cotton gloves, socks, masks and XAD-2 resin were used to measure the potential exposure for applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to difenoconazole during preparation of spray suspension and application with a power sprayer on a grape orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump IOM sampler and cassette and glass fiber filter were used for inhalation exposure. The field studies were carried out in a grape orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 97.3% and 119.6% in the level of 100 LOQ (limit of quantification) while the LOQ for difenoconazole was $0.025{\mu}g/mL$ using HPLC-UVD. The arms exposure to difenoconazole for the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, legs). The exposure to difenoconazole in the legs for applicator (3.78 mg) was highest in the parts of body. The dermal exposure for mixer/loader and applicator were 0.02 and 2.28 mg on a grape orchard, respectively. The inhalation exposure during application was estimated as 0.02 mg. The ratio of inhalation exposure to dermal exposure was equivalent to 0.9% of the dermal exposure. CONCLUSION: The inhalation exposure for applicator indicated $18.8{\times}10^{-3}mg$, which was level of 0.9% of the dermal exposure (2.28 mg). Operator exposure (0.004 mg/kg bw/day) to difenoconazole during treatment for grape is calculated as 2.5% of the established AOEL (0.16 mg/kg bw/day).

Monitoring Bacillus cereus and Aerobic Bacteria in Raw Infant Formula and Microbial Quality Control during Manufacturing (영.유아용 식품원료의 Bacillus cereus와 일반세균 모니터링 및 제조공정 중 미생물 품질제어)

  • Jung, Woo-Young;Eom, Joon-Ho;Kim, Byeong-Jo;Ju, In-Sun;Kim, Chang-Soo;Kim, Mi-Ra;Byun, Jung-A;Park, You-Gyoung;Son, Sang-Hyuck;Lee, Eun-Mi;Jung, Rae-Seok;Na, Mi-Ae;Yuk, Dong-Yeon;Gang, Ji-Yeon;Heo, Ok-Sun;Yoon, Min-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.494-501
    • /
    • 2010
  • The purpose of this study was to examine the presence of Bacillus cereus, aerobic bacteria and coliforms in the raw material of infant formulas and investigate the manufacturing process in terms of microbial safety. Among ten kinds of raw infant formula material samples (n=20), Bacillus cereus appeared in two (n=4). Aerobic bacteria were not detected in raw infant formula material or maximum 4.15 log CFU/g. Eleven species of aerobic bacteria were isolated and 76% of them were Sphingomonas paucimobilis, Pseudomonas fluorescens, Rhizobium radiobactor, or Stenotrophomonas maltophilia. A Pearson's correlation analysis revealed that the most influential factors for detecting Bacillus cereus were aerobic bacteria and coliforms. In other words, when the measured values of aerobic bacteria and coliforms were higher, the possibility that Bacillus cereus would appear increased. In a regression model to predict Bacillus cereus, the rate of appearance was correlated with aerobic bacteria and coliforms, and its contribution rate for effectiveness was 86%. Improving microbial quality control by pasteurization, spray dry, popping and extrusion resulted in a decrease in the numbers of Bacillus cereus, aerobic bacteria and coliforms in the raw materials. The results suggest that a hazard analysis and critical control point system might be effective for reducing microbiological contamination.

Effects of Environment Friendly Agricultural Materials to Insect Parasitoids in the Laboratory (실내조건에서 친환경농자재가 기생성 천적곤충에 미치는 영향)

  • Yu, Yong-Man;Kang, Eun-Jin;Seo, Mi-Ja;Kang, Myeng-Gi;Lee, Hee-Jin;Kim, Da-A;Gil, Mi-La;Youn, Young-Nam
    • Korean journal of applied entomology
    • /
    • v.45 no.2 s.143
    • /
    • pp.227-234
    • /
    • 2006
  • For the biological control of the greenhouse whitefly, aphids, American leaf-miners, Encarsia formosa, Aphidius coiemani, Diglyphus isaea, and Dacnusa sibirica were used as biological control factors. Otherwise, many kinds of environment friendly agricultural materials were also used in the kindly environment friendly farming. For testing the toxicity of environment friendly agricultural materials against to insect parasitoids as biological control factors, 61 environment friendly agricultural materials were selected by using methods and periods with insect parasitoids in the greenhouses. Environment friendly agricultural materials were sprayed to mummies and adults of E. formosa and A. colemani, and adults of Diglyphus isaea and Dacnusa sibirica in laboratory condition. Emergence rates were checked during 12 days after spray to mummies of E. formosa and A. colemani, and survival rates were at 24 and 48 hours after viral test for adult parasitoids, with 10% sugar solution. Emergence rates of E. formosa mummies were inhibited by sprayed the fungicidal environment friendly agricultural material (FEFAM) E and the environment friendly agricultural materials contained molybdenum (EFAMMo) G as 0.4 and 2.7%, respectively. E. formosa adults were not survived in vial for 48hours after sprayed and dried with the environment friendly agricultural materials contained plant extract (EFAMPE) J and the EFAMMo C. The environment friendly agricultural materials contained microelements (EFAMMEs) B and EFAMPE H, environment friendly agricultural materials contained useful soil microorganisms (EFAMSMs) H, FEFAM A and FEFAM D were recorded low survival rates of E. formosa adults with 6.7, 13.3, 13.3, 20.0 and 20.0, respectively. In case of the spraying environment friendly agricultural materials to mummies of A. colemani there were low emergence rate from mummies to adults as around 20s % with water spraying as control. A. colemani adults were not survived in vial with EFAMMo C. EFAMPE J, EFAMPE F, EFAMPE H, EFAMSM H were recorded low survival rates under 20% as 6.7, 13.3, 13.3 and 13.3, respectively, D. isaea and D. sibirica adults were not survived in vial with EFAMPE J. EFAMMo C was 53.3% of survival rates in 48 hours vial tests. D. isaea and D. sibirica were not affected by environment friendly agricultural materials compared with E. formosa and A. colemani.

Effect of COY (Cooking Oil and Yolk mixture) and ACF (Air-circulation Fan) on Control of Powdery Mildew and Production of Organic Lettuce (난황유와 공기순환팬의 상추 흰가루병 방제효과 및 생산에 미치는 영향)

  • Jee, Hyeong-Jin;Ryu, Kyung-Yul;Park, Jong-Ho;Choi, Du-Hoe;Ryu, Gab-Hee;Ryu, Jae-Gee;Shen, Shun-Shan
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • Powdery mildew of lettuce that is a newly reported disease became a threat to organic cultivation of lettuce in Korea since the disease caused by Podosphaera fusca resulted in a half of yield loss in heavily infected fields. To improve micro-environmental conditions around lettuce, ACF (air-circulation fan) was installed on inside roof of plastic house at 6 m intervals. The ACF increased 57% of lettuce yield and reduced 71.4% of lettuce seedling death. COY (cooking oil and yolk mixture) consisted of cooking oil 0.3% and egg yolk 0.08% reduced lettuce seedling death from 89.3% to 92.9% under the greenhouse. Seven-day interval spray of COY resulted in high control values of powdery mildew of lettuce ranging from 89.6% to 96.3%, which was comparable to a fungicide, Azoxystrobin. Lettuce yield was increased about two times compared to a non-treated conventional cultivation. Qualities of lettuce such as hardness and chlorophyll content were also improved by COY and ACF combination. Effect of COY on control of the disease was improved when $CaCO_3$ or $SiO_2$ 1,000 ppm was supplemented. Results indicated that the COY made of cooking oil such as canola emulsified with yolk was highly effective on control of powdery mildew of lettuce and suitable for organic agriculture, especially when combined with ACF.

Growth and Flower Bud Induction in Strawberry 'Sulhyang' Runner Plant as Affected by Exogenous Application of Benzyladenine, Gibberellic Acid, and Salicylic Acid (벤질아데닌, 지베렐린산, 살리실산이 '설향' 딸기묘의 생장과 화아 유도에 미치는 영향)

  • Thi, Luc The;Nguyen, Quan Hoang;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2019
  • Strawberry ($Fragaria{\times}ananassa$) is one of the most important and popular fruit crops in the world, and 'Sulhyang' is one of the principal cultivars cultivated in the Republic of Korea for the domestic market. The growth and flower induction in strawberry is the process which influences directly on fruit bearing and yield of this crop. In this study, effect of benzyladenine (BA), gibberellic acid ($GA_3$), and salicylic acid (SA) on growth and flower bud induction in strawberry 'Sulhyang' was investigated. The 3-week-old runner plants, grown in 21-cell propagation trays, were potted and cultivated in growth chambers with $25^{\circ}C/15^{\circ}C$ (day/night) temperatures, 70% relative humidity (RH), and light intensity of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux density (PPFD) provided by white light emitting diodes (LEDs). The runner plants were treated with one of three concentrations, 0 (control), 100, and $200mg{\cdot}L^{-1}$ of BA, $GA_3$, or SA solution. The chemicals were sprayed two times on leaves of runner plants at an interval of two weeks. After 9 weeks the results showed that the application of all chemicals caused reduction of root length and chlorophyll (SPAD) content as compared to the control. The lowest chlorophyll (SPAD) content was recorded in plants treated with $GA_3$. However, the treatment of $200mg{\cdot}L^{-1}$ $GA_3$ promoted leaf area, leaf fresh weight, and plant fresh weight. The greatest flower induction (85%) and number of inflorescences (4.3 inflorescences per plant) were observed in the treatment of $200mg{\cdot}L^{-1}\;SA$, followed by $100mg{\cdot}L^{-1}\;SA$. Overall, results suggest that foliar application of $GA_3$ solution could accelerate plant growth, while foliar application of SA solution could induce hastened flowering. Further studies may be needed to find out the relationship between $GA_3$ and SA solutions treated in a combination, and the molecular mechanism involved in those responses observed.

Prediction of Air Temperature and Relative Humidity in Greenhouse via a Multilayer Perceptron Using Environmental Factors (환경요인을 이용한 다층 퍼셉트론 기반 온실 내 기온 및 상대습도 예측)

  • Choi, Hayoung;Moon, Taewon;Jung, Dae Ho;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.95-103
    • /
    • 2019
  • Temperature and relative humidity are important factors in crop cultivation and should be properly controlled for improving crop yield and quality. In order to control the environment accurately, we need to predict how the environment will change in the future. The objective of this study was to predict air temperature and relative humidity at a future time by using a multilayer perceptron (MLP). The data required to train MLP was collected every 10 min from Oct. 1, 2016 to Feb. 28, 2018 in an eight-span greenhouse ($1,032m^2$) cultivating mango (Mangifera indica cv. Irwin). The inputs for the MLP were greenhouse inside and outside environment data, and set-up and operating values of environment control devices. By using these data, the MLP was trained to predict the air temperature and relative humidity at a future time of 10 to 120 min. Considering typical four seasons in Korea, three-day data of the each season were compared as test data. The MLP was optimized with four hidden layers and 128 nodes for air temperature ($R^2=0.988$) and with four hidden layers and 64 nodes for relative humidity ($R^2=0.990$). Due to the characteristics of MLP, the accuracy decreased as the prediction time became longer. However, air temperature and relative humidity were properly predicted regardless of the environmental changes varied from season to season. For specific data such as spray irrigation, however, the numbers of trained data were too small, resulting in poor predictive accuracy. In this study, air temperature and relative humidity were appropriately predicted through optimization of MLP, but were limited to the experimental greenhouse. Therefore, it is necessary to collect more data from greenhouses at various places and modify the structure of neural network for generalization.

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Disease Management in Road Trees and Pepper Plants by Foliar Application of Bacillus spp. (Bacillus spp. 엽면살포에 의한 가로수 및 고추의 병 방제)

  • Chung, Joon-hui;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.81-93
    • /
    • 2016
  • Out of plant-associated bacteria, certain plant growth-promoting bacteria (PGPB) have been reported to increase plant growth and productivity and to elicit induced resistance against plant pathogens. In this study, our objective was to broaden the range of applications of leaf-colonizing PGPB for foliar parts of road tress and pepper. Total 1,056 isolates of endospore-forming bacteria from tree phylloplanes were collected and evaluated for the enzymatic activities including protease, lipase, and chitinase and antifungal capacities against two fungal pathogens, Colletotrichum graminicola and Botrytis cinerea. Fourteen isolates classified as members of the bacilli group displayed the capacity to colonize pepper leaves after spraying inoculation. Three strains, 5B6, 8D4, and 8G12, and the mixtures were employed to evaluate growth promotion, yield increase and defence responses under field condition. Additionally, foliar application of bacterial preparation was applied to the road tress in Yuseong, Daejeon, South Korea, resulted in increase of chlorophyll contents and leaf thickness, compared with non-treated control. The foliar application of microbial preparation reduced brown shot-hole disease of Prunus serrulata L. and advanced leaf abscission in Ginkgo biloba L. Collectively, our results suggest that leaf-colonizing bacteria provide potential microbial agents to increase the performance of woody plants such as tree and pepper through spray application.

Insecticidal and Acaricidal Activities of Domestic Plant Extracts against Five Major Arthropod Pests (국내산 식물체 추출물의 다섯 가지 주요 해충에 대한 살충 및 살비 활성)

  • Park, Il-Kwon;Park, Ji-Doo;Kim, Chul-Su;Shin, Sang-Chul;Ahn, Young-Joon;Park, Seung-Chan;Lee, Sang-Gil
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.271-278
    • /
    • 2002
  • Methanol extracts from 420 samples of 173 plant species in 58 families were tested at 5000 ppm for their insecticidal and acaricidal activities against five economically important arthropod pests by spray method. The responses varied with arthropod pest species, plant species and plant tissue sampled. In a test with Nilaparvata lugens Stal, extracts from Zanthoxylum piperitum barks, Chamaecyparis obtusa leaf and Quercus salicina leaf showed potent insecticidal activity. With Plutella xylostella L., potent larvicidal activity was observed from extracts of Platycarya strobilacea wood, Meliosma myriantha barks, Sophora japonica leaf, Zanthoxylum piperitum barks, and Pinus thunbergii wood. Methanol extracts of Sophora japonica leaf and Zanthoxylum piperitum barks showed high insecticidal activity against Spodoptera litura. In a test with Tetranychus urticae Koch, extract from Carpinus coreana leaf, Firmiana simplex barks, Elaeagnus macrophylla leaf, Aralia elata leaf, Comus controversa barks and Chamaecyparis obtusa leaf exhibited strong acaricidal activity. As a naturally occurring pest control agent, Zanthoxylum piperitum barks could be useful as new insecticidal and acaricidal products against various arthropod pests.