DOI QR코드

DOI QR Code

Growth and Flower Bud Induction in Strawberry 'Sulhyang' Runner Plant as Affected by Exogenous Application of Benzyladenine, Gibberellic Acid, and Salicylic Acid

벤질아데닌, 지베렐린산, 살리실산이 '설향' 딸기묘의 생장과 화아 유도에 미치는 영향

  • Thi, Luc The (Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University) ;
  • Nguyen, Quan Hoang (Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University) ;
  • Park, Yoo Gyeong (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jeong, Byoung Ryong (Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University)
  • 티데루 (경상대학교 대학원 응용생명과학부(BK21 Plus Program)) ;
  • 응우엔황콴 (경상대학교 대학원 응용생명과학부(BK21 Plus Program)) ;
  • 박유경 (경상대학교 농업생명과학연구원) ;
  • 정병룡 (경상대학교 대학원 응용생명과학부(BK21 Plus Program))
  • Received : 2019.03.19
  • Accepted : 2019.04.26
  • Published : 2019.04.30

Abstract

Strawberry ($Fragaria{\times}ananassa$) is one of the most important and popular fruit crops in the world, and 'Sulhyang' is one of the principal cultivars cultivated in the Republic of Korea for the domestic market. The growth and flower induction in strawberry is the process which influences directly on fruit bearing and yield of this crop. In this study, effect of benzyladenine (BA), gibberellic acid ($GA_3$), and salicylic acid (SA) on growth and flower bud induction in strawberry 'Sulhyang' was investigated. The 3-week-old runner plants, grown in 21-cell propagation trays, were potted and cultivated in growth chambers with $25^{\circ}C/15^{\circ}C$ (day/night) temperatures, 70% relative humidity (RH), and light intensity of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux density (PPFD) provided by white light emitting diodes (LEDs). The runner plants were treated with one of three concentrations, 0 (control), 100, and $200mg{\cdot}L^{-1}$ of BA, $GA_3$, or SA solution. The chemicals were sprayed two times on leaves of runner plants at an interval of two weeks. After 9 weeks the results showed that the application of all chemicals caused reduction of root length and chlorophyll (SPAD) content as compared to the control. The lowest chlorophyll (SPAD) content was recorded in plants treated with $GA_3$. However, the treatment of $200mg{\cdot}L^{-1}$ $GA_3$ promoted leaf area, leaf fresh weight, and plant fresh weight. The greatest flower induction (85%) and number of inflorescences (4.3 inflorescences per plant) were observed in the treatment of $200mg{\cdot}L^{-1}\;SA$, followed by $100mg{\cdot}L^{-1}\;SA$. Overall, results suggest that foliar application of $GA_3$ solution could accelerate plant growth, while foliar application of SA solution could induce hastened flowering. Further studies may be needed to find out the relationship between $GA_3$ and SA solutions treated in a combination, and the molecular mechanism involved in those responses observed.

딸기는 세계적으로 중요하고 인기있는 과채류이며 '설향'은 국내 시장에서 재배되고 있는 주요 품종 중 하나이다. 딸기의 생장과 화아 유도는 이 작물의 과실에 수량에 직접적으로 영향을 미치는 과정이다. 본 연구에서는 벤질아데닌(BA), 지베렐린 산($GA_3$), 살리실 산(SA)이 '설향' 딸기의 생장과 화아 유도에 미치는 영향을 조사하였다. 21구 트레이에서 번식된 지 3주가 경과한 런너묘를 온도는 $25^{\circ}C/15^{\circ}C$(주간/야간), 상대습도는 70%, 광원은 백색 LED, 광도는 $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}\;PPFD$로 유지되는 생장 챔버에서 재배하였다. BA, $GA_3$ 및 SA를 각 0(대조구), 100, $200mg{\cdot}L^{-1}$로 런너묘에 처리하였다. 이러한 생장조절제를 런너묘의 잎에 2주 간격으로 2회 엽면살포하였다. 9주 후의 생육을 비교한 결과, 생장조절제를 엽면살포한 모든 처리에서 대조구에 비해 근장과 엽록소함량(SPAD)이 감소하는 경향을 보였다. $GA_3$ 처리에서 엽록소함량(SPAD)이 가장 낮았다. 하지만 $GA_3\;200mg{\cdot}L^{-1}$ 처리에서 엽면적, 잎 생체중, 식물 생체중이 증가하였다. 화아유도율과 화수는 $SA\;200mg{\cdot}L^{-1}$ 처리에서 각 85%와 식물체당 4.3개로 가장 높았고 그 다음으로 $SA\;200mg{\cdot}L^{-1}$ 처리에서 높았다. 전체적으로 $GA_3$ 처리에서 식물 생장을 향상시켰고, SA 처리에서는 개화를 촉진하였다. 더 나아가 $GA_3$와 SA를 혼합한 처리를 추가한 연구를 수행하여 생장조절제간의 관계를 구명하고 그 결과에서의 분자 메커니즘과 관련된 반응을 조사하는 것이 필요하다고 판단된다.

Keywords

References

  1. Beyl, C.A. 2016. PGRs and their use in micropropagation, p. 33-56. In: R.N. Trigiano and D.J. Gray (eds.). Plant tissue culture, development, and biotechnology. CRC Press, Boca Raton, Florida, USA.
  2. Blanchard, M.G. and E.S. Runkle. 2008. Benzyladenine promotes flowering in Doritaenopsis and Phalaenopsis orchids. J. Plant Growth Regul. 27:141-150. https://doi.org/10.1007/s00344-008-9040-0
  3. Cleland, C.F. and O. Tanaka. 1979. Effect of daylength on the ability of salicylic acid to induce flowering in the long-day plant Lemna gibba G3 and the short-day plant Lemna paucicostata 6746. Plant Physiol. 64:421-424. https://doi.org/10.1104/pp.64.3.421
  4. Conn, E.E. 1984. Compartmentation of secondary compounds. Annu. Proc. Phytochem. Soc. Eur. 24:1-2.
  5. Durner, E.F., J.A. Barden, D.G. Himelrick, and E.B. Poling. 1984. Photoperiod and temperature effects on flower and runner development in day-neutral, June-bearing, and everbearing strawberries. J. Amer. Soc. Hortic. Sci. 109:396-400.
  6. Gupta, S. and S.C. Maheshwari. 1970. Growth and flowering of Lemna paucicostata. II. Role of growth regulators. Plant Cell Physiol. 11:97-106. https://doi.org/10.1093/oxfordjournals.pcp.a074499
  7. Guttridge, C.G. 1985. Fragaria $\times$ ananassa, p. 16-33. In: A.H. Halevy (ed.). CRC Handbook of Flowering. CRC Press, Boca Raton, Florida.
  8. Guttridge, C.G. and P.A. Thompson. 1963. The effects of gibberellins on growth and flowering of Fragaria and Duchesna. J. Exp. Bot. 15:631-646. https://doi.org/10.1093/jxb/15.3.631
  9. Heide, O.M., J.A. Stavang, and A. Sonsteby. 2013. Physiology and genetics of flowering in cultivated and wild strawberries - A review. J. Hortic. Sci. Biotechnol. 88:1-18. https://doi.org/10.1080/14620316.2013.11512930
  10. Kang, J.H., H.M. Kim, H.M. Kim, H.W. Jeong, H.R. Lee, H.S. Hwang, B.R. Jeong, N.J. Kang, and S.J. Hwang. 2018. Gibberellin application method and concentration affect to growth, runner, and daughter plant production in 'Maehyang' strawberry during nursery period. Protected Hort. Plant Fac. 27:407-414. (in Korean). https://doi.org/10.12791/KSBEC.2018.27.4.407
  11. Khurana, J.P. and C.F. Cleland. 1992. Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain, Lemna paucicostata LP6. Plant Physiol. 100:1541-1546. https://doi.org/10.1104/pp.100.3.1541
  12. Kim, D.Y., W.B. Chae, J. H. Kwak, S. Park, S.R. Cheong, J.M. Choi, and M.K. Yoon. (2013). Effect of timing of nutrient starvation during transplant production on the growth of runner plants and yield of strawberry 'Seolhyang'. Protected Hort. Plant Fac. 22:421-426. (in Korean). https://doi.org/10.12791/KSBEC.2013.22.4.421
  13. Kim, T.J., C.H. Lee, and K.Y. Paek. 2000. Effects of growth regulators under low-temperature environment on growth and flowering of Doritaenopsis 'Happy Valentine' during summer. J. Kor. Soc. Hort. Sci. 41:101-104. (in Korean).
  14. Kim, Y.J., H.M. Kim, H.M. Kim, S.J. Hwang. 2017. Growth and runner production of 'Maehyang' strawberry as affected by application method and concentration of cytokinin. Protected Hort. Plant Fac. 26:72-77 (in Korean). https://doi.org/10.12791/KSBEC.2017.26.2.72
  15. Lee, T.T. and F. Skoog. 1965. Effect of substituted phenols on bud formation and growth of tobacco tissue culture. Physiol. Plant. 18:386-402. https://doi.org/10.1111/j.1399-3054.1965.tb06902.x
  16. Lee, Y.R., D.W. Lee, J.Y. Won, M.S. Kim, J.Y. Kim, and J.S. Lee. 1998. Effect of BA on flowering of Cymbidium ensifolium 'Tekkotsusosin'. Kor. J. Hort. Sci. Technol. 16:531-532. (in Korean).
  17. Maheshwari, S.C. and R. Venkataraman. 1966. Induction of flowering in duckweed Wolffia microscopica by a new kinin, zeatin. Planta 70:304-306. https://doi.org/10.1007/BF00396494
  18. Martin-Mex, R., E. Villanueva-Couob, V. Uicab-Quijano, and A. Larque-Saavedra. 2003. Positive effect of salicylic acid on the flowering of Gloxinia, p. 149-151. In: Proceedings 31st Annual Meeting, August 3-6, 2003, Plant Growth Regulation Society of America, Vancouver, Canada.
  19. Newton, L.A. and E.S. Runkle. 2015. Effects of benzyladenine on vegetative growth and flowering of potted ‘Miltoniopsis Orchids’. Acta Hortic. 1078:121-127. https://doi.org/10.17660/actahortic.2015.1078.16
  20. Oota, Y. 1972. The response of Lemna gibba G3 to a single long day in the presence of EDTA. Plant Cell Physiol. 13:575-580. https://doi.org/10.1093/oxfordjournals.pcp.a074721
  21. Oota, Y. 1975. Short-day flowering of Lemna gibba G3 induced by salicylic acid. Plant Cell Physiol. 16:113-1135. https://doi.org/10.1093/oxfordjournals.pcp.a075232
  22. Pacheco, A.C., C. da Silva Cabral, E.S. da Silva Fermino, and C.C. Aleman. 2013. Salicylic acid-induced changes to growth, flowering and flavonoids production in marigold plants. J. Med. Plants Res. 7:3158-3163.
  23. Perez, A.G., R. Olias, J. Espeda, J.M. Olias, and C. Sanz. 1997. Rapid determination of sugars, nonvolatile acids, and ascorbic acid in strawberry and fruits. J. Agr. Food Chem. 45:3545-3549. https://doi.org/10.1021/jf9701704
  24. Piringer, A.A. and D.H. Scott. 1964. Interrelation of photoperiod, chilling, and flower cluster and runner production by strawberries. Proc. Amer. Soc. Hortic. Sci. 84:295-301.
  25. Porlingis, I.C. and D. Boynton. 1961. Growth responses of the strawberry plant, Fragaria chiloensis var. ananassa, to gibberellic acid and to environmental conditions. J. Amer. Soc. Hort. Sci. 78:261-269.
  26. Raskin, I. 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:439-463. https://doi.org/10.1146/annurev.pp.43.060192.002255
  27. Rivas-San Vicente, M. and J. Plasencia. 2011. Salicylic acid beyond defence: Its role in plant growth and development. J. Exp. Bot. 62:3321-3338. https://doi.org/10.1093/jxb/err031
  28. Seth, P.N., R. Venkatarman, and S.C. Maheshwari. 1970. Studies on the growth and flowering of a short-day plant, Wolffia microscopica. II. Role of metal ions and chelates. Planta 90:349-359. https://doi.org/10.1007/BF00386387
  29. Thompson, P.A. and C.G. Guttridge. 1959. Effect of gibberellic acid on the initiation of flowers and runners in the strawberry. Nature 184:72-73. https://doi.org/10.1038/184072a0
  30. Wada, K.C. and K. Takeno. 2010. Stress-induced flowering, plant signaling and behavior. Plant Signal. Behav. 5:944-947. https://doi.org/10.4161/psb.5.8.11826
  31. Wada, K.C., M. Yamada, T. Shiraya, and K. Takeno. 2010. Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor-nutrition stress-induced flowering of Pharbitis nil. J. Plant Physiol. 167:447-452. https://doi.org/10.1016/j.jplph.2009.10.006
  32. Zobayer, N., S.H. Prodhan, S.U. Sikdar, F. Azim, and M. Ashrafuzzaman. 2011. Study of shoot multiplication of strawberry (Fragaria ananassa). Int. J. Agric. Res. Innov. Technol. 1:69-72. https://doi.org/10.3329/ijarit.v1i1-2.13936