• Title/Summary/Keyword: Spin coating-pyrolysis

Search Result 12, Processing Time 0.031 seconds

Preparation of $TiO_2$ thin films by coating-pyrolysis process of Ti-naphthenate (Ti-naphthenate의 코팅-열분해에 의한$TiO_2$ 박막의 제조)

  • 김진영;김승원;장우석;김현태;최상원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.7-10
    • /
    • 2002
  • $TiO_2$ thin films were prepared by coating and subsequent pyrolysis processes using Titanium-naphthenate as a raw material. $TiO_2$ thin films were made by spin-coating technique on the glass substrates, and heat treated at 45$0^{\circ}C$, The transmittance, refractive index, crystallinity and surface morphology of the $TiO_2$ thin films were measured by UV/Vis spec trophotometer, x-ray diffractometer and scanning electron microscope. $TiO_2$thin films on the slide glass showed the trans mittance of 70-90% and refractive index of 2.6 at 420 nm. The results of XRD and SEM showed that the $TiO_2$ thin films exhibited the anatase phase and the thread-like surface morphology.

Optical properties of metal doped TiO2 thin films prepared by spin coating-pyrolysis process (스핀코팅으로 금속물질을 도핑한 TiO2박막의 광학적 특성)

  • Hwang, Kyu-Seong;Kim, Jai-Min;Jung, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • Metal-doped $TiO_2$ thin films were prepared on soda-lime-silica glass substrates by using a spin coating-pyrolysis process. As-deposited films were prefired at $500^{\circ}C$ or 10 min in air. Five-coated films were finally annealed at $600^{\circ}C$ for 30 min in air. High resolution X-ray diffraction, field emission scanning electron microscope and UV spectrophotometer were used to analyze film's property. The largest red shift in optical energy gap is obtained in the Fe-doped $TiO_2$ film.

  • PDF

Fabrication of PZT Film by a Single-Step Spin Coating Process

  • Oh, Seung-Min;Kang, Min-Gyu;Do, Young-Ho;Kang, Chong-Yun;Nahm, Sahn;Yoon, Seok-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.193-193
    • /
    • 2011
  • To obtain ceramic films, the sol-gel coating technique has been broadly used with heat treatment, but crack formation tend to occur during heat treatment in thick sol-gel films. We prepared PZT thin films by sol-gel method with single-step spin coating process. The PZT solution have been synthesized using lead acetate ($Pb(CH_3COO)_2$), zirconium acetylacetonate ($Zr(OC_3H_7^n)_4$), and titanium diisopropoxide bis(acetylacetonate) 75wt% in isopropanol ($Ti(OC_3H_7^i)_2(OC_3H_7^n)_2$) as starting materials and n-propanol was selected as a solvent. The poly(vynilpyrrolidone) (PVP) was added with 0, 0.25, 0.5, 0.75, and 1 molar ratios to control viscosity of solution. We investigated influence of the viscosity on thickness, microstructure, and electrical properties of final PZT films. Thermo-gravimetric analysis and differential scanning calorimeter (TGA/DSC) was carried out from room temperature to $800^{\circ}C$ in order to measure pyrolysis temperature. Structural characteristics were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Ferroelectric and dielectric properties were measured by RT66A (Radiant) and impedance analyzer (Agilent), respectively. The thicknesses of PZT films depended on incorporation of an excess amount of PVP. Finally, we obtained PZT films of good quality without crack formation via single-step spin coating.

  • PDF

Preparation of Si(Al)ON Precursor Using Organoaluminum Imine and Poly (Phenyl Carbosilane), and the Compositional Change of the Film with Different Heat Treatment Condition

  • Lee, Yoonjoo;Shin, Dong-Geun;Kwon, Woo Teck;Kim, Soo Ryong;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.243-247
    • /
    • 2015
  • Si(Al)ON precursor was synthesized by formation of new Si-N bond using organoaluminum imine and liquid type poly(phenyl carbosilane). It was decomposed between $200-600^{\circ}C$, and the ceramic yield was 51% after pyrolysis. 150 - 200 nm in thickness of coating film was obtained by spin coating method. The precursor was easily oxidized during process because it was unstable in air. However the oxygen content was limited to 0.5 - 0.7 to silicon in heat treatment step. Even though the content of nitrogen was decreased by pyrolysis, Al-N and Si-N bonds were formed in ammonia atmosphere, and Si(Al)ON film was formed with 0.2 in content to silicon.

Effect of Prefiring Time on Epitaxy and crystallinity of Pb(Zr, Ti)O$_3$ Thin Films in Low Temperature Pyrolysis (저온도포열분해에 의해 제조된 Pb(Zr, Ti)O$_3$ 박막의 에피탁시와 결정화도에 미치는 전열처리 시간의 영향)

  • 황규석;이형민;김병훈
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.969-973
    • /
    • 1998
  • Pb(Zr, Ti)O3 (PZT) (Zr:Ti= 52: 48) thin films were prepared on MgO(100) substrates by dipping-py-rolysis process using metal naphthenates as starting materials. Thin films were fabricated by spin coating technique and the precursor films were prefired at 20$0^{\circ}C$ in air for 0.5, 1, 2, 3, and 24 h followed by final heat treatment at 75$0^{\circ}C$ for 30min. Film prefired for 24 h lost orientational properties and pole figure analysis showed the lost of the epitaxial relationship between the films and substrate while highly a/c-axis oriented thin films were obtained for the samples prefired for 1, 2, and 3h.

  • PDF

Preparation of Ferroelectric $Cr_3C_2$ Thin Film Using Sol-Gel Spin Coating Process (솔-젤 회전 코팅법을 이용한 강유전성 $BaTiO_3$ 박막제조)

  • 배호기;고태경
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.795-803
    • /
    • 1994
  • Ferroelectric BaTiO3 thin film was produced using BaTi-ethoxide sol. This sol was prepared from BaTi-ethoxide by a partial hydrolysis with ammonia as a basic catalyst and ethylene glycol as a chelating agent. BaTiO3 thin film was prepared from three continuous spin-coating layers of the sol on bare Si(100) wafer at 2500 rpm followed by pyrolysis at $700^{\circ}C$ for 30 min. After the heat treatment, the film was 0.200$\pm$0.010 ${\mu}{\textrm}{m}$ thick and its grain size was 0.059 ${\mu}{\textrm}{m}$. On the other hand, electrical properties were measured for BaTiO3 thin film separately prepared on Au-deposited silicon wafer. The dielectric constant and loss of the BaTiO3 thin film at room temperature was 150~160 and 0.04 respectively, which was measured at 10 kHz and oscillation level of 0.1 V. In the measurements of the dielectric properties at high temperatures, it was observed that the capacitance of the thin film increases steeply, while the dielectric loss reaches maximum around 1$25^{\circ}C$, which corresponds a phase transition from tetragonal to cubic BaTiO3.

  • PDF

Comparison Study of Compact Titanium Oxide (c-TiO2) Powder Electron Transport Layer Fabrication for Carbon Electrode-based Perovskite Solar Cells (탄소전극 기반 페로브스카이트 태양전지 적용을 위한 조밀 이산화티타늄 분말 전자수송층 제작 비교 연구)

  • Woo, Chae Young;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.297-302
    • /
    • 2022
  • This study compares the characteristics of a compact TiO2 (c-TiO2) powdery film, which is used as the electron transport layer (ETL) of perovskite solar cells, based on the manufacturing method. Additionally, its efficiency is measured by applying it to a carbon electrode solar cell. Spin-coating and spray methods are compared, and spray-based c-TiO2 exhibits superior optical properties. Furthermore, surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) exhibits the excellent surface properties of spray-based TiO2. The photoelectric conversion efficiency (PCE) is 14.31% when applied to planar perovskite solar cells based on metal electrodes. Finally, carbon nanotube (CNT) film electrode-based solar cells exhibits a 76% PCE compared with that of metal electrode-based solar cells, providing the possibility of commercialization.

Microstructures and Electrical Properties of Thick PZT Films with Thickness Variation Fabricated by Multi-coating Method (Multi-coating법으로 제조된 두꺼운 PZT막의 두께 변화에 따른 미세구조 및 전기적 특성)

  • Park, Jun-Sik;Jang, Yeon-Tae;Park, Hyo-Deok;Choe, Seung-Cheol;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.211-214
    • /
    • 2002
  • Properties of 52/48 PZT films with various thicknesses for piezoelectric micro-electro mechanical systems (MEMS) devices fabricated by multi-coating method on $Pt(3500{\AA})/Ti(400{\AA})/SiO_2(3000{\AA})/Si$(525$\mu\textrm{m}$) substrates were investigated. PZT films were deposited by spin-coating process at 3500 rpm for 30 sec, followed by pyrolysis at 45$0^{\circ}C$ for 10 min producing the thickness of about 120nm. These processes were repeated 4, 8, 12, 16 and 20 times in order to have various thicknesses, respectively. Finally, they were crystallized at $650^{\circ}C$ for 30 min. All thick PZT films showed dense and homogeneous surface microstructures. Thick PZT films showed crystalline structures of random orientations with increasing thickness. Dielectric constants of thick PZT films were increased with increasing film thickness and reached 800 at 100kHz for 2.3$\mu\textrm{m}$ thick PZT film. $P_r\; and\; E_c$ of 2.3$\mu\textrm{m}$ thick PZT films were about 20$\mu$C/$\textrm{cm}^2$ and 63kV/cm. Depth profile analysis by Auger Electron Spectroscopy (AES) of 4800 $\AA$ thick PZT film showed the formation of the perovskite phase on Pt layer by Pb diffusion behavior. It was considered that Pb-Pt intermediate layer promoted PZT (111) columnar structures.

Synthesis of Solution-based Sb-doped SnO2 Thin Films

  • Koo, Bon-Ryul;An, Geon-Hyoung;Lee, Yu-jin;Ahn, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.367-367
    • /
    • 2014
  • Transparent conductive oxides (TCOs) 박막은 가시광선영역에서의 높은 투과율과 낮은 저항 특성을 동시에 갖고 있어 최근 smart windows, solar cells, liquid crystal displays (LCD), organic light emitting devices (OLED)등과 같은 최첨단 기기에 필수적인 구성요소로 활발히 사용되고 있다. 따라서, 현재까지 FTO ($SnO_2:F$), ITO ($In_2O_3:Sn$), ATO ($SnO_2:Sb$)등과 같은 다양한 TCO들이 많은 연구자들에 의해 연구되고 있다. 그 중 ITO는 우수한 전기적(${\sim}10^{-4}{\Omega}cm$) 및 광학적(~85%) 특성 때문에 현재 상업적으로 활발히 응용되고 있는 대표적인 물질이다. 하지만 ITO의 주된 구성요소인 indium은 제한적인 매장량과 과도한 소비량 때문에 원가가 비싸다는 문제점이 있다. 반면에, ATO는 우수한 전기적(${\sim}10^{-3}{\Omega}cm$) 및 광학적(~80%) 특성뿐만 아니라 구성물질들의 매장량이 풍부하여 ATO의 원가가 저렴하다는 장점을 가지고 있어 현재 ITO을 대체 할 수 물질로 관심 받고 있다 [1]. 지금까지 우수한 특성을 갖는 ATO박막을 합성하는 방법으로 sol-gel spin coating, sputtering, spray pyrolysis, chemical vapor deposition (CVD)등이 알려져 있다. 이 중에서도, sol-gel spin coating과 spray pyrolysis은 solution기반의 합성법으로 분류되며 합성과정이 간단하고 비용이 저렴하다는 장점이 있고 현재까지 많은 연구가 보고되었다. 그러나, 진공기반이 아닌 우수한 특성을 갖는 solution기반의 ATO박막을 합성하기 위해서는 새로운 합성법의 개발이 학문적으로나 산업적으로도 매우 중요한 이슈이다. 따라서, 본 연구에서는 electrospray을 활용하여 solution기반의 ATO박막을 처음으로 합성하였다. 게다가 ATO박막에 열처리온도에 따른 구조, 화학, 전기, 광학적 특성을 확인하기 위하여 X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), Hall Effect Measurement System, UV spectrophotometer를 사용하였다. 이러한 실험 결과들을 바탕으로 electrospray을 통해 합성된 solution기반의 ATO박막에 자세한 특성을 본 학회에서 다루도록 하겠다.

  • PDF

Electrical and Optical Properties of F-Doped SnO2 Thin Film/Ag Nanowire Double Layers (F-Doped SnO2 Thin Film/Ag Nanowire 이중층의 전기적 및 광학적 특성)

  • Kim, Jong-Min;Koo, Bon-Ryul;Ahn, Hyo-Jin;Lee, Tae-Kun
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.125-131
    • /
    • 2015
  • Fluorine-doped $SnO_2$ (FTO) thin film/Ag nanowire (NW) double layers were fabricated by means of spin coating and ultrasonic spray pyrolysis. To investigate the optimum thickness of the FTO thin films when used as protection layer for Ag NWs, the deposition time of the ultrasonic spray pyrolysis process was varied at 0, 1, 3, 5, or 10 min. The structural, chemical, morphological, electrical, and optical properties of the double layers were examined using X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, the Hall effect measurement system, and UV-Vis spectrophotometry. Although pure Ag NWs formed isolated droplet-shaped Ag particles at an annealing temperature of $300^{\circ}C$, Ag NWs covered by FTO thin films maintained their high-aspect-ratio morphology. As the deposition time of the FTO thin films increased, the electrical and optical properties of the double layers degraded gradually. Therefore, the double layer fabricated with FTO thin films deposited for 1 min exhibited superb sheet resistance (${\sim}14.9{\Omega}/{\Box}$), high optical transmittance (~88.6 %), the best FOM (${\sim}19.9{\times}10^{-3}{\Omega}^{-1}$), and excellent thermal stability at an annealing temperature of $300^{\circ}C$ owing to the good morphology maintenance of the Ag NWs covered by FTO thin films.