DOI QR코드

DOI QR Code

Comparison Study of Compact Titanium Oxide (c-TiO2) Powder Electron Transport Layer Fabrication for Carbon Electrode-based Perovskite Solar Cells

탄소전극 기반 페로브스카이트 태양전지 적용을 위한 조밀 이산화티타늄 분말 전자수송층 제작 비교 연구

  • Woo, Chae Young (Department of Nano Fusion Technology, Pusan National University) ;
  • Lee, Hyung Woo (Department of Nano Fusion Technology, Pusan National University)
  • 우채영 (부산대학교 나노융합기술학과) ;
  • 이형우 (부산대학교 나노융합기술학과)
  • Received : 2022.08.11
  • Accepted : 2022.08.23
  • Published : 2022.08.28

Abstract

This study compares the characteristics of a compact TiO2 (c-TiO2) powdery film, which is used as the electron transport layer (ETL) of perovskite solar cells, based on the manufacturing method. Additionally, its efficiency is measured by applying it to a carbon electrode solar cell. Spin-coating and spray methods are compared, and spray-based c-TiO2 exhibits superior optical properties. Furthermore, surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) exhibits the excellent surface properties of spray-based TiO2. The photoelectric conversion efficiency (PCE) is 14.31% when applied to planar perovskite solar cells based on metal electrodes. Finally, carbon nanotube (CNT) film electrode-based solar cells exhibits a 76% PCE compared with that of metal electrode-based solar cells, providing the possibility of commercialization.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음

References

  1. J.-W. Lee and N.-G. Park: Vacuum Magazine, 1 (2014) 10.
  2. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka: J. Am. Chem. Soc., 131 (2009) 6050.
  3. H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin and S. I. Seok: Nature, 598 (2021) 444.
  4. S. Svanstrom, T. J. Jacobsson, G. Boschloo, E. M. J. Johansson, H. Rensmo and U. B. Cappel: Appl. Mat. Interfaces, 12 (2020) 7212.
  5. W. Ming, D. Yang, T. Li, L. Zhang and M.-H. Du: Adv. Sci., 5 (2018) 1700662.
  6. S. Iijima: Nature, 354 (1991) 56.
  7. S. Xie, W. Li. Z. Pan, B. Chang and L. Sun: J. Phys. Chem. Solids, 61 (2000) 1153.
  8. P. R. Bandaru: J. Nanosci. Nanotechnol., 7 (2007) 1239.
  9. S. K. Hong and H. W. Lee: J. Powder Mater., 24 (2017) 248.
  10. M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Willams, K. R. Atkison and R. H. Baughman: Science, 309 (2005) 1215.
  11. D. Barrit, Y. Zhang, T. Yang, M.-C. Tang, R. Li, D.-M. Smilgies, S. F. Liu, T. D. Anthopoulos, A. Amassian and K. Zhao: Sol. RRL, 5 (2020) 2000668.
  12. M. Liu, M. B. Johnston and H. J. Snaith: Nature, 501 (2013) 395.
  13. H. Zhang, H. Wang, W. Chen and A. K.-Y. Jen: Adv. Mat., 29 (2017) 1604984.
  14. M. Tian, C. Y. Woo, J. W. Choi, J.-Y Seo, J.-M Kim, S. H. Kim and H. W. Lee: ACS Appl. Mat. Interfaces, 12 (2020) 54806.
  15. L. Li, S. K. Hong, Y. Jo, M. Tian, C. Y. Woo, S. H. Kim, J.-M. Kim and H. W. Lee: ACS Appl. Mater. & Interfaces, 11 (2019) 16223.
  16. W. Ke, G. Fang, J. Wang, P. Qin, H. Tao, H. Lei, Q. Liu, X. Dai and X. Zhao: ACS Appl. Mater. & Interfaces, 6 (2014) 15959.
  17. M. T. Masood, S. Qudsia, M. Hadadian, C. Weinberger, M. Nyman, C. Ahlang, S. Dahlstrom, M. Liu, P. Vivo, R. Osterbacka and J.-H. Smatt: Nanomaterials, 10 (2020) 181.
  18. A. Slawek, Z. Starowicz and M. Lipinski: Materials, 14 (2021) 3295.
  19. C. Zhang, W. Luana and Y. Yina: Energy Procedia, 105 (2017) 793.
  20. Y. Yang, M. T. Hoang, D. Yao, N. D. Pham, V. T. Tiong, X. Wang, W. Sun and H. Wang: Sol. Energy Mater. Sol. Cells, 210 (2020) 110517.
  21. H. Wei, J. Xiao, Y. Yang, S. Lv, J. Shi, X. Xu, J. Dong, Y. Luo, D. Li and Q. Meng: Carbon, 93 (2015) 861.
  22. J.-W. Lee, I. Jeon, H.-S. Lin, S. Seo, T.-H. Han, A. Anisimov, E. I. Kauppinen, Y. Matsuo, S. Maruyama and Y. Yang: Nano Lett., 19 (2019) 2223.
  23. I. Jeon, A. Shawky, S. Seo, Y. Qian, A. Anisimov, E. I. Kauppinen, Y. Matsuo and S. Maruyam: J. of Mater. Chem. A, 8 (2020) 11141.
  24. H. Wang, H. Liu, Z. Dong, W. Li, L. Zhu and H. Chen: Nano Energy, 84 (2021) 105881.