• Title/Summary/Keyword: Sphingomonas sp.

Search Result 46, Processing Time 0.022 seconds

Cloning, Heterologous Expression, and Characterization of Novel Protease-Resistant ${\alpha}$-Galactosidase from New Sphingomonas Strain

  • Zhou, Junpei;Dong, Yanyan;Li, Junjun;Zhang, Rui;Tang, Xianghua;Mu, Yuelin;Xu, Bo;Wu, Qian;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1532-1539
    • /
    • 2012
  • The ${\alpha}$-galactosidase-coding gene agaAJB13 was cloned from Sphingomonas sp. JB13 showing 16S rDNA (1,343 bp) identities of ${\leq}97.2%$ with other identified Sphingomonas strains. agaAJB13 (2,217 bp; 64.9% GC content) encodes a 738-residue polypeptide (AgaAJB13) with a calculated mass of 82.3 kDa. AgaAJB13 showed the highest identity of 61.4% with the putative glycosyl hydrolase family 36 ${\alpha}$-galactosidase from Granulicella mallensis MP5ACTX8 (EFI56085). AgaAJB13 also showed <37% identities with reported protease-resistant or Sphingomonas ${\alpha}$-galactosidases. A sequence analysis revealed different catalytic motifs between reported Sphingomonas ${\alpha}$-galactosidases (KXD and RXXXD) and AgaAJB13 (KWD and SDXXDXXXR). Recombinant AgaAJB13 (rAgaAJB13) was expressed in Escherichia coli BL21 (DE3). The purified rAgaAJB13 was characterized using p-nitrophenyl-${\alpha}$-D-galactopyranoside as the substrate and showed an apparent optimum at pH 5.0 and $60^{\circ}C$ and strong resistance to trypsin and proteinase K digestion. Compared with reported proteaseresistant ${\alpha}$-galactosidases showing thermolability at $50^{\circ}C$ or $60^{\circ}C$ and specific activities of <71 U/mg with or without protease treatments, rAgaAJB13 exhibited a better thermal stability (half-life of >60 min at $60^{\circ}C$) and higher specific activities (225.0-256.5 U/mg). These sequence and enzymatic properties suggest AgaAJB13 is the first identified and characterized Sphingomonas ${\alpha}$-galactosidase, and shows novel protease resistance with a potential value for basic research and industrial applications.

Synergistic Effect of Acetylalginate Esterase and Alginate Lyase on the Degradation of Acetylalginate from Pseudomonas aeruginosa ATCC 39324 (P. aeruginosa ATCC 39324 생산 아세틸알긴산의 분해반응에서 아세틸알긴산 아세틸분해효소와 알긴산 분해효소의 상승효과)

  • Kim, Hee Sook
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1420-1427
    • /
    • 2013
  • A novel acetylalginate esterase (AcAlgE) gene was previously cloned and characterized from Sphingomonas sp. MJ-3. In this study, the synergistic effects of MJ-3 AcAlgE, and KS-408 alginate lyase on the degradation of acetylalginate from Pseudomonas aeruginosa were investigated by using high-field 1H-NMR and an FPLC-equipped peptide column. The alginate lyase coupled assay of AcAlgE showed that degradation of high molecular weight acetylalginate was more difficult than degradation of acid hydrolyzed acetylalginate. The degradation of acetylalginate by alginate lyase was easier after AcAlgE was used to remove the acetyl group from acetylalginate. This result showed that the recombinant AcAlgE enhanced the degradation of acetylalginate by alginate lyase.

Bacterial Diversity of the Han River as Determined by 16S rRNA Gene Analysis (16S rRNA 유전자 계통분석에 의한 한강수계의 세균 다양성)

  • Han, Suk-Kyun;Lee, Il-Gyu;Ahn, Tae-Young
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.194-199
    • /
    • 1998
  • Bacterial diversity was determined by amplification and sequencing of 16S rDNA at Tancheon and Jungrang in Han river. Twenty-seven clones constructed were divided 7 groups using RFLP. Fifteen clones were classified 4 groups in Tancheon and the group (HT-1 clone) including many clones was affiliated a high similarity with Aerobacter cryaerophilus (the class Proteobacteria including members of the delta subdivisions). The other two groups (HT-6 and HT-9 clone) including several clones were classified with the class Cytophagales in Tancheon. Twelve clones were classified 3 groups in Jungrang and the group (HJ-1 clone) including many clones was affiliated a high similarity with Sphingomonas sp. (the class Proteobacteria including members of the alpha subdivisions). As a whole results, the class Proteobacteria (alpha, beta and delta subdivision), the order Cytophagales, and the order Actinomycetales were detected.

  • PDF

Effects of Different Heterotrophic Bacteria on Phototrophic Activity of Chlorella sp. MF1907 (Chlorella sp. MF1907의 광합성 활성에 미치는 다양한 종속영양세균의 영향)

  • Noh, Young Jin;Jeong, So-Yeon;Kim, Tae Gwan
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.101-110
    • /
    • 2021
  • Interactions between microalgae and heterotrophic bacteria are common in natural environments. This study investigated the effect of heterotrophic bacteria on the activity of the photosynthetic eukaryotic alga Chlorella sp. MF1907 when cocultured. A total of 31 heterotrophic bacterial isolates belonging to different genera were cocultured with MF1907. Interactions of the alga with Agromyces, Rhodococcus, Sphingomonas, Hyphomicrobium, Rhizobium, and Pseudomonas were positive, while those with Burkholderia, Paraburkholderia, Micrococcus, Arthrobacter, Mycobacterium, Streptomyces, Pedobacter, Mucilaginibacter, Fictibacillus, Tumebacillus, Sphingopyxis, and Erythrobacter were negative (p < 0.05). A turnover experiment demonstrating a switch from heterotrophic to autotrophic activity of MF1907 was performed using 16 isolates exhibiting apparent effects (positive, negative, or neutral). Compared with the results of the coculture experiment, eight isolates exhibited the same outcomes, while the others did not. Consistently, Pseudomonas and Agromyces showed a remarkable positive effect on MF1907 activity, and Burkholderia, Streptomyces, and Erythrobacter had a marked negative effect. Our results suggest that it may be possible to use the isolates for controlling populations of microalgae in natural and engineered environments.

A Novel Microcystin-degrading Bacterium, Microbacterium sp. MA21 (Microcystin을 분해하는 신균주 Microbacterium sp. MA21)

  • Ko, So-Ra;Lee, Young-Ki;Oh, Hee-Mock;Ahn, Chi-Yong
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.2
    • /
    • pp.158-164
    • /
    • 2013
  • A microcystin-degrading bacterium was isolated from Daechung reservoir, Korea. The isolated bacterium was identified as Microbacterium sp. by 16S rRNA gene sequence analysis, and designated as Microbacterium sp. MA21. This strain degraded cyanobacterial hepatotoxin, microcystin-LR, over 80% when incubated at $30^{\circ}C$ for 12 hr in R2A medium. Two unknown metabolites of microcystin were also identified during the degradation process. Although only Sphinogomonas and Actinobacteria have been known to degrade microcystin previously, this is the first report that Microbacterium sp. MA21 could degrade microcystin.

A PCR Denaturing Gradient Gel Electrophoresis (DGGE) Analysis of Intestinal Microbiota in Gastric Cancer Patients Taking Anticancer Agents (PCR-DGGE를 통해 분석한 항암치료에 따른 장내 미생물 변화)

  • Yu, Sun Nyoung;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1290-1298
    • /
    • 2017
  • Intestinal microbiota is an important factor in the development of immune defense mechanisms in the human body. Treatments with anticancer agents, such as 5-Fluorouracil, Cisplatin, and Oxaliplatin, significantly change the temporal stability and environment of intestinal bacterial flora. The anticancer treatment chemotherapy often depresses the immune system and induces side effects, such as diarrhea. This study investigated the effects anticancer agents have on the intestinal microbial ecosystems of patients with gastric cancer. An exploration of the diversity and temporal stability of the dominant bacteria was undertaken using a DGGE with the 16S rDNA gene. Researchers collected stool samples from patients zero, two and eight weeks after the patients started chemotherapy. After the treatment with anticancer agents, the bacteria strains Sphingomonas paucimobilis, Lactobacillus gasseri, Parabacteroides distasonis and Enterobacter sp. increased. This study focused on the survival of the beneficial microorganisms Bifidobacterium and Lactobacillus in the intestines of cancer patients. The administration of antigastric cancer agents significantly decreased Lactobacillus and Bifidobacterium populations and only moderately affected the main bacterial groups in the patients' intestinal ecosystems. The results showed the versatility of a cultivation independent-PCR DGGE analysis regarding the visual monitoring of ecological diversity and anticancer agent-induced changes in patients' complex intestinal microbial ecosystems.

The 2,3-Dihydroxybiphenyl 1,2-Dioxygenase Gene (phnQ) of Pseudomonas sp. DJ77: Nucleotide Sequence, Enzyme Assay, and Comparison with Isofunctional Dioxygenases

  • Kim, Seong-Jae;Shin, Hee-Jung;Park, Yong-Chjun;Kim, Young-Soo;Min, Kyung-Hee;Kim, Young-Chang
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.399-404
    • /
    • 1999
  • 2,3-Dihydroxybiphenyl 1,2-dioxygenase (2,3-DHBD), which catalyzes the ring meta-cleavage of 2,3-dihydroxybiphenyl, is encoded by the phnQ gene of biphenyl- and phenanthrene-degrading Pseudomonas sp. strain DJ77. We determined the nucleotide sequence of a DNA fragment of 1497 base pairs which included the phnQ gene. The fragment lncluded an open reading frame of 903 base pairs to accommodate the enzyme. The predicted amino acid sequence of the enzyme subunit consisted of 300 residues. In front of the gene, a sequence resembling an E. coli promoter was identified, which led to constitutive expression of the cloned gene in E. coli. The deduced amino acid sequence of the PhnQ enzyme exhibited 85.6% identity with that of the corresponding enzyme in Sphingomonas yanoikuyae Q1 (formerly S. paucimobilis Q1) and 22.1% identity with that of catechol 1,2,3-dioxygenase from the same DJ77 strain. PhnQ showed broader substrate preference than previously-cloned PhnE, catechol 2,3-dioxygenase. Ten amino acid residues, considered to be important for the role of extradiol dioxygenases, were conserved.

  • PDF

Biodegradation of Dibenzo-p-dioxin and Dibenzofuran by Bacteria

  • Armengaud, Jean;Timmis, Kenneth N.
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.241-252
    • /
    • 1997
  • Polychlorodibenzofurans and polychlorodibenzo-pdioxins are among the most toxic xenobiotics released into the biosphere and the cause of significant public concern because of their apparent ubiquityalbeit at low levels- in food and environment. Several bacteria able to degrade nonchlorinated dioxin and dibenzofuran and in some cases to attack chlorinated analogues have recently been isolated. This opens up the possibility that bioremediation processes may ultimately be developed to eliminate these toxic compounds from contaminated sites. In this review we summarize current knowledge on the genetics and biochemistry of dioxin and dibenzofruan degradation by Sphingomonas sp. RW1, a gram-negative bacterium, and highlight the unusual nature of the genetic organization of these pathways.

  • PDF

Identification of Bacteria by Sequence Analysis of 16S rRNA in Testes of Jeju Horses (제주마 고환내 세균의 16S rRNA 염기서열 분석을 이용한 동정)

  • Park, Yong-Sang;Kim, Nam-Young;Han, Sang-Hyun;Park, Nam-Geon;Ko, Moon-Suck;Cho, Won-Mo;Chae, Hyun-Seok;Cho, In-Chul;Cho, Sang-Rae;Woo, Jae-Hoon;Kang, Tae-Young
    • Journal of Veterinary Clinics
    • /
    • v.31 no.1
    • /
    • pp.36-39
    • /
    • 2014
  • Many bacteria colonized in the horse semen affect quality of the sperm and some may cause infection in the mare reproductive tract and infertility of susceptible mare. This study was initiated to determine the prevalence of bacteria in testes of Jeju horses by determining rRNA sequence. The samples were swabed from the testes of nine Jeju horses (aged from 8 to 12 months after birth). Bacteria isolated from testes were identified by 16S rDNA sequencing. 1.6-kbp PCR products for 16S rRNA coding region were obtained using the universal primers. The PCR products were further purified and sequenced. Maximum similar species were found by BLAST search in the GenBank DNA database. BLAST results showed that the sequences were similar to those of Acinetobacter sp (A. schindleri, A. ursingii)., Bacillus cereus, Corynebacterium glutamicum, Escherichia coli, Gamma proteobacterium, Micrococcus luteus, Pseudomonas mendocina, Shigella sonnei, Sphingomonas sp., Staphylococcus sp (S. cohnii, S. saprophyticus, S. xylosus)., and Stenotrophomonas maltophilia. DNA sequences for 16S rRNA is provided useful informations for species identification of pathogenic microorganisms for the reproductive organs in horses.