Acknowledgement
This study was supported by the basic science research program through the National Research Foundation of Korea funded by the Ministry of Education (2018R1D1A1B07048872).
References
- Metting F. 1996. Biodiversity and application of microalgae. J. Ind. Microbiol. 17: 477-489. https://doi.org/10.1007/BF01574779
- Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96. https://doi.org/10.1263/jbb.101.87
- Pulz O, Gross W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65: 635-648. https://doi.org/10.1007/s00253-004-1647-x
- Ahmad A, Yasin NM, Derek C, Lim J. 2011. Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sust. Energ. Rev. 15: 584-593. https://doi.org/10.1016/j.rser.2010.09.018
- Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol. 101: 6797-6804. https://doi.org/10.1016/j.biortech.2010.03.120
- Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenerg. 66: 204-213. https://doi.org/10.1016/j.biombioe.2014.04.010
- Xie T, Sun Y, Du K, Liang B, Cheng R, Zhang Y. 2012. Optimization of heterotrophic cultivation of Chlorella sp. for oil production. Bioresour. Technol. 118: 235-242. https://doi.org/10.1016/j.biortech.2012.05.004
- Lee J, Cho D-H, Ramanan R, Kim B-H, Oh H-M, Kim H-S. 2013. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour. Technol. 131: 195-201. https://doi.org/10.1016/j.biortech.2012.11.130
- Mouget J-L, Dakhama A, Lavoie MC, de la Noue J. 1995. Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol. 18: 35-43. https://doi.org/10.1016/0168-6496(95)00038-C
- Yao S, Lyu S, An Y, Lu J, Gjermansen C, Schramm A. 2019. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. J. Appl. Microbiol. 126: 359-368. https://doi.org/10.1111/jam.14095
- Guo Z, Tong YW. 2014. The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions. J. Appl. Phycol. 26: 1483-1492. https://doi.org/10.1007/s10811-013-0186-1
- Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. 2005. Algae acquire vitamin B 12 through a symbiotic relationship with bacteria. Nature 438: 90-93. https://doi.org/10.1038/nature04056
- Kim H-J, Choi Y-K, Jeon HJ, Bhatia SK, Kim Y-H, Kim Y-G, et al. 2015. Growth promotion of Chlorella vulgaris by modification of nitrogen source composition with symbiotic bacteria, Microbacterium sp. HJ1. Biomass Bioenerg. 74: 213-219. https://doi.org/10.1016/j.biombioe.2015.01.012
- Mujtaba G, Rizwan M, Lee K. 2017. Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. J. Ind. Eng. Chem. 49: 145-151. https://doi.org/10.1016/j.jiec.2017.01.021
- Goncalves AL, Pires JC, Simoes M. 2016. Wastewater polishing by consortia of Chlorella vulgaris and activated sludge native bacteria. J. Clean. Prod. 133: 348-357. https://doi.org/10.1016/j.jclepro.2016.05.109
- Luo J, Wang Y, Tang S, Liang J, Lin W, Luo L. 2013. Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa. PLoS One 8: e76444. https://doi.org/10.1371/journal.pone.0076444
- Zhang B, Cai G, Wang H, Li D, Yang X, An X, et al. 2014. Streptomyces alboflavus RPS and its novel and high algicidal activity against harmful algal bloom species Phaeocystis globosa. PLoS One 9: e92907. https://doi.org/10.1371/journal.pone.0092907
- Perales-Vela HV, Garcia RV, Gomez-Juarez EA, Salcedo-Alvarez MO, Canizares-Villanueva RO. 2016. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris. Ecotox. Environ. Safe 132: 311-317. https://doi.org/10.1016/j.ecoenv.2016.06.019
- Zheng N, Ding N, Gao P, Han M, Liu X, Wang J, et al. 2018. Diverse algicidal bacteria associated with harmful bloom-forming Karenia mikimotoi in estuarine soil and seawater. Sci. Total Environ. 631: 1415-1420. https://doi.org/10.1016/j.scitotenv.2018.03.035
- Mayo AW, Noike T. 1994. Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture. Water Res. 28: 1001-1008. https://doi.org/10.1016/0043-1354(94)90184-8
- Heredia-Arroyo T, Wei W, Hu B. 2010. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl. Biochem. Biotechnol. 162: 1978-1995. https://doi.org/10.1007/s12010-010-8974-4
- Berthold DE, Shetty KG, Jayachandran K, Laughinghouse IV HD, Gantar M. 2019. Enhancing algal biomass and lipid production through bacterial co-culture. Biomass Bioenerg. 122: 280-289. https://doi.org/10.1016/j.biombioe.2019.01.033
- Somdee T, Sumalai N, Somdee A. 2013. A novel actinomycete Streptomyces aurantiogriseus with algicidal activity against the toxic cyanobacterium Microcystis aeruginosa. J. Appl. Phycol. 25: 1587-1594. https://doi.org/10.1007/s10811-013-9999-1
- Waksman SA, Reilly HC, Johnstone DB. 1946. Isolation of streptomycin-producing strains of Streptomyces griseus. J. Bacteriol. 52: 393-397. https://doi.org/10.1128/jb.52.3.393-397.1946
- Qian H, Li J, Pan X, Sun Z, Ye C, Jin G, Fu Z. 2012. Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. Environ. Toxicol. 27: 229-237. https://doi.org/10.1002/tox.20636
- Jeong S-Y, Cho K-S, Kim TG. 2014. Density-dependent enhancement of methane oxidation activity and growth of methylocystis sp. by a non-methanotrophic bacterium Sphingopyxis sp. Biotechnol. Rep. 4: 128-133. https://doi.org/10.1016/j.btre.2014.09.007
- Liang Y, Sarkany N, Cui Y. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31: 1043-1049. https://doi.org/10.1007/s10529-009-9975-7
- Kim S, Park J-E, Cho Y-B, Hwang S-J. 2013. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour. Technol. 144: 8-13. https://doi.org/10.1016/j.biortech.2013.06.068