DOI QR코드

DOI QR Code

Effects of Different Heterotrophic Bacteria on Phototrophic Activity of Chlorella sp. MF1907

Chlorella sp. MF1907의 광합성 활성에 미치는 다양한 종속영양세균의 영향

  • Noh, Young Jin (Department of Microbiology, Pusan National University) ;
  • Jeong, So-Yeon (Department of Microbiology, Pusan National University) ;
  • Kim, Tae Gwan (Department of Microbiology, Pusan National University)
  • 노영진 (부산대학교 미생물학과) ;
  • 정소연 (부산대학교 미생물학과) ;
  • 김태관 (부산대학교 미생물학과)
  • Received : 2020.09.07
  • Accepted : 2020.11.16
  • Published : 2021.03.28

Abstract

Interactions between microalgae and heterotrophic bacteria are common in natural environments. This study investigated the effect of heterotrophic bacteria on the activity of the photosynthetic eukaryotic alga Chlorella sp. MF1907 when cocultured. A total of 31 heterotrophic bacterial isolates belonging to different genera were cocultured with MF1907. Interactions of the alga with Agromyces, Rhodococcus, Sphingomonas, Hyphomicrobium, Rhizobium, and Pseudomonas were positive, while those with Burkholderia, Paraburkholderia, Micrococcus, Arthrobacter, Mycobacterium, Streptomyces, Pedobacter, Mucilaginibacter, Fictibacillus, Tumebacillus, Sphingopyxis, and Erythrobacter were negative (p < 0.05). A turnover experiment demonstrating a switch from heterotrophic to autotrophic activity of MF1907 was performed using 16 isolates exhibiting apparent effects (positive, negative, or neutral). Compared with the results of the coculture experiment, eight isolates exhibited the same outcomes, while the others did not. Consistently, Pseudomonas and Agromyces showed a remarkable positive effect on MF1907 activity, and Burkholderia, Streptomyces, and Erythrobacter had a marked negative effect. Our results suggest that it may be possible to use the isolates for controlling populations of microalgae in natural and engineered environments.

다양한 환경에서 미세조류와 종속영양세균(heterotrophic bacteria) 사이의 상호작용은 일반적이다. 본 연구에서는 미세조류 Chlorella sp. MF1907와 서로 다른 속(genus)에 속하는 31종의 종속영양세균을 공배양(co-culture)하여 MF1907의 광합성 활성에 미치는 종속영양세균의 영향을 규명하였다. 6종의 종속영양세균(Agromyces, Rhodococcus, Sphingomonas, Hyphomicrobium, Rhizobium, Pseudomonas)은 MF1907의 광합성 활성을 증가시켰으며(p < 0.05), 12종의 종속영양세균(Burkholderia, Paraburkholderia, Micrococcus, Arthrobacter, Mycobacterium, Streptomyces, Pedobacter, Mucilaginibacter, Fictibacillus, Tumebacillus, Sphingopyxis, Erythrobacter)은 MF1907의 광합성 활성을 저해하였다(p < 0.05). 종속영양세균 중 MF1907의 광합성 활성에 유의미한 효과(positive, negative, neutral)를 나타낸 16종을 선택하여 MF1907의 종속영양에서 독립영양으로의 활성 전환에 미치는 이들의 영향을 평가하였다. 8종의 종속영양세균은 공배양 결과와 동일하게 MF1907의 종속영양에서 독립영양으로의 활성 전환에 영향을 미쳤다. 하지만 나머지 8종은 공배양 결과와 MF1907의 종속영양에서 독립영양으로의 활성 전환에 미치는 결과가 반대를 나타내었다. 공배양과 활성 전환 실험 모두에서 일관되게 Pseudomonas와 Agromyces는 MF1907의 광합성 활성을 강하게 증가시켰으며(p < 0.05), Burkholderia, Streptomyces, Erythrobacter는 MF1907의 광합성 활성을 강하게 저해하였다(p < 0.05). 본 연구 결과는 다양한 종속영양세균과 미세조류 사이의 상호작용 이해를 도모하고 종속영양세균을 활용하여 자연 환경과 공정 시스템에서 미세조류의 바이오매스를 조절할 수 있음을 시사한다.

Keywords

Acknowledgement

This study was supported by the basic science research program through the National Research Foundation of Korea funded by the Ministry of Education (2018R1D1A1B07048872).

References

  1. Metting F. 1996. Biodiversity and application of microalgae. J. Ind. Microbiol. 17: 477-489. https://doi.org/10.1007/BF01574779
  2. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96. https://doi.org/10.1263/jbb.101.87
  3. Pulz O, Gross W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65: 635-648. https://doi.org/10.1007/s00253-004-1647-x
  4. Ahmad A, Yasin NM, Derek C, Lim J. 2011. Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sust. Energ. Rev. 15: 584-593. https://doi.org/10.1016/j.rser.2010.09.018
  5. Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol. 101: 6797-6804. https://doi.org/10.1016/j.biortech.2010.03.120
  6. Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenerg. 66: 204-213. https://doi.org/10.1016/j.biombioe.2014.04.010
  7. Xie T, Sun Y, Du K, Liang B, Cheng R, Zhang Y. 2012. Optimization of heterotrophic cultivation of Chlorella sp. for oil production. Bioresour. Technol. 118: 235-242. https://doi.org/10.1016/j.biortech.2012.05.004
  8. Lee J, Cho D-H, Ramanan R, Kim B-H, Oh H-M, Kim H-S. 2013. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour. Technol. 131: 195-201. https://doi.org/10.1016/j.biortech.2012.11.130
  9. Mouget J-L, Dakhama A, Lavoie MC, de la Noue J. 1995. Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol. 18: 35-43. https://doi.org/10.1016/0168-6496(95)00038-C
  10. Yao S, Lyu S, An Y, Lu J, Gjermansen C, Schramm A. 2019. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. J. Appl. Microbiol. 126: 359-368. https://doi.org/10.1111/jam.14095
  11. Guo Z, Tong YW. 2014. The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions. J. Appl. Phycol. 26: 1483-1492. https://doi.org/10.1007/s10811-013-0186-1
  12. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. 2005. Algae acquire vitamin B 12 through a symbiotic relationship with bacteria. Nature 438: 90-93. https://doi.org/10.1038/nature04056
  13. Kim H-J, Choi Y-K, Jeon HJ, Bhatia SK, Kim Y-H, Kim Y-G, et al. 2015. Growth promotion of Chlorella vulgaris by modification of nitrogen source composition with symbiotic bacteria, Microbacterium sp. HJ1. Biomass Bioenerg. 74: 213-219. https://doi.org/10.1016/j.biombioe.2015.01.012
  14. Mujtaba G, Rizwan M, Lee K. 2017. Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. J. Ind. Eng. Chem. 49: 145-151. https://doi.org/10.1016/j.jiec.2017.01.021
  15. Goncalves AL, Pires JC, Simoes M. 2016. Wastewater polishing by consortia of Chlorella vulgaris and activated sludge native bacteria. J. Clean. Prod. 133: 348-357. https://doi.org/10.1016/j.jclepro.2016.05.109
  16. Luo J, Wang Y, Tang S, Liang J, Lin W, Luo L. 2013. Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa. PLoS One 8: e76444. https://doi.org/10.1371/journal.pone.0076444
  17. Zhang B, Cai G, Wang H, Li D, Yang X, An X, et al. 2014. Streptomyces alboflavus RPS and its novel and high algicidal activity against harmful algal bloom species Phaeocystis globosa. PLoS One 9: e92907. https://doi.org/10.1371/journal.pone.0092907
  18. Perales-Vela HV, Garcia RV, Gomez-Juarez EA, Salcedo-Alvarez MO, Canizares-Villanueva RO. 2016. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris. Ecotox. Environ. Safe 132: 311-317. https://doi.org/10.1016/j.ecoenv.2016.06.019
  19. Zheng N, Ding N, Gao P, Han M, Liu X, Wang J, et al. 2018. Diverse algicidal bacteria associated with harmful bloom-forming Karenia mikimotoi in estuarine soil and seawater. Sci. Total Environ. 631: 1415-1420. https://doi.org/10.1016/j.scitotenv.2018.03.035
  20. Mayo AW, Noike T. 1994. Effect of glucose loading on the growth behavior of Chlorella vulgaris and heterotrophic bacteria in mixed culture. Water Res. 28: 1001-1008. https://doi.org/10.1016/0043-1354(94)90184-8
  21. Heredia-Arroyo T, Wei W, Hu B. 2010. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl. Biochem. Biotechnol. 162: 1978-1995. https://doi.org/10.1007/s12010-010-8974-4
  22. Berthold DE, Shetty KG, Jayachandran K, Laughinghouse IV HD, Gantar M. 2019. Enhancing algal biomass and lipid production through bacterial co-culture. Biomass Bioenerg. 122: 280-289. https://doi.org/10.1016/j.biombioe.2019.01.033
  23. Somdee T, Sumalai N, Somdee A. 2013. A novel actinomycete Streptomyces aurantiogriseus with algicidal activity against the toxic cyanobacterium Microcystis aeruginosa. J. Appl. Phycol. 25: 1587-1594. https://doi.org/10.1007/s10811-013-9999-1
  24. Waksman SA, Reilly HC, Johnstone DB. 1946. Isolation of streptomycin-producing strains of Streptomyces griseus. J. Bacteriol. 52: 393-397. https://doi.org/10.1128/jb.52.3.393-397.1946
  25. Qian H, Li J, Pan X, Sun Z, Ye C, Jin G, Fu Z. 2012. Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. Environ. Toxicol. 27: 229-237. https://doi.org/10.1002/tox.20636
  26. Jeong S-Y, Cho K-S, Kim TG. 2014. Density-dependent enhancement of methane oxidation activity and growth of methylocystis sp. by a non-methanotrophic bacterium Sphingopyxis sp. Biotechnol. Rep. 4: 128-133. https://doi.org/10.1016/j.btre.2014.09.007
  27. Liang Y, Sarkany N, Cui Y. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31: 1043-1049. https://doi.org/10.1007/s10529-009-9975-7
  28. Kim S, Park J-E, Cho Y-B, Hwang S-J. 2013. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour. Technol. 144: 8-13. https://doi.org/10.1016/j.biortech.2013.06.068