Browse > Article
http://dx.doi.org/10.4014/jmb.1112.12036

Cloning, Heterologous Expression, and Characterization of Novel Protease-Resistant ${\alpha}$-Galactosidase from New Sphingomonas Strain  

Zhou, Junpei (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Dong, Yanyan (Medical School, Liaocheng Vocational and Technical College)
Li, Junjun (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Zhang, Rui (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Tang, Xianghua (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Mu, Yuelin (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Xu, Bo (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Wu, Qian (College of Life Sciences, Yunnan Normal University)
Huang, Zunxi (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.11, 2012 , pp. 1532-1539 More about this Journal
Abstract
The ${\alpha}$-galactosidase-coding gene agaAJB13 was cloned from Sphingomonas sp. JB13 showing 16S rDNA (1,343 bp) identities of ${\leq}97.2%$ with other identified Sphingomonas strains. agaAJB13 (2,217 bp; 64.9% GC content) encodes a 738-residue polypeptide (AgaAJB13) with a calculated mass of 82.3 kDa. AgaAJB13 showed the highest identity of 61.4% with the putative glycosyl hydrolase family 36 ${\alpha}$-galactosidase from Granulicella mallensis MP5ACTX8 (EFI56085). AgaAJB13 also showed <37% identities with reported protease-resistant or Sphingomonas ${\alpha}$-galactosidases. A sequence analysis revealed different catalytic motifs between reported Sphingomonas ${\alpha}$-galactosidases (KXD and RXXXD) and AgaAJB13 (KWD and SDXXDXXXR). Recombinant AgaAJB13 (rAgaAJB13) was expressed in Escherichia coli BL21 (DE3). The purified rAgaAJB13 was characterized using p-nitrophenyl-${\alpha}$-D-galactopyranoside as the substrate and showed an apparent optimum at pH 5.0 and $60^{\circ}C$ and strong resistance to trypsin and proteinase K digestion. Compared with reported proteaseresistant ${\alpha}$-galactosidases showing thermolability at $50^{\circ}C$ or $60^{\circ}C$ and specific activities of <71 U/mg with or without protease treatments, rAgaAJB13 exhibited a better thermal stability (half-life of >60 min at $60^{\circ}C$) and higher specific activities (225.0-256.5 U/mg). These sequence and enzymatic properties suggest AgaAJB13 is the first identified and characterized Sphingomonas ${\alpha}$-galactosidase, and shows novel protease resistance with a potential value for basic research and industrial applications.
Keywords
Sphingomonas; protease resistance; ${\alpha}$-galactosidase;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Trinder, P. 1969. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22: 158-161.   DOI
2 Whitcomb, D. C. and M. E. Lowe. 2007. Human pancreatic digestive enzymes. Digest. Dis. Sci. 52: 1-17.   DOI   ScienceOn
3 White, D. C., S. D. Sutton, and D. B. Ringelberg. 1996. The genus Sphingomonas: Physiology and ecology. Curr. Opin. Biotechnol. 7: 301-306.   DOI   ScienceOn
4 Zhou, J. P., H. Q. Huang, K. Meng, P. J. Shi, Y. R. Wang, H. Y. Luo, et al. 2010. Cloning of a new xylanase gene from Streptomyces sp. TN119 using a modified thermal asymmetric interlaced-PCR specific for GC-rich genes and biochemical characterization. Appl. Biochem. Biotechnol. 160: 1277-1292.   DOI   ScienceOn
5 Zhou, J. P., P. J. Shi, H. Q. Huang, Y. N. Cao, K. Meng, P. L. Yang, et al. 2010. A new ${\alpha}$-galactosidase from symbiotic Flavobacterium sp. TN17 reveals four residues essential for ${\alpha}$-galactosidase activity of gastrointestinal bacteria. Appl. Microbiol. Biotechnol. 88: 1297-1309.   DOI   ScienceOn
6 Zhou, J. P., P. J. Shi, R. Zhang, H. Q. Huang, K. Meng, P. L. Yang, and B. Yao. 2011. Symbiotic Streptomyces sp. TN119 GH 11 xylanase: A new pH-stable, protease- and SDS-resistant xylanase. J. Ind. Microbiol. Biotechnol. 38: 523-530.   DOI   ScienceOn
7 Zhou, J. P., R. Zhang, P. J. Shi, H. Q. Huang, K. Meng, T. Z. Yuan, et al. 2011. A novel low-temperature-active ${\beta}$-glucosidase from symbiotic Serratia sp. TN49 reveals four essential positions for substrate accommodation. Appl. Microbiol. Biotechnol. 92: 305-315.   DOI   ScienceOn
8 Farias, M. E., S. Revale, E. Mancini, O. Ordonez, A. Turjanski, N. Cortez, and M. P. Vazquez. 2011. Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean Puna. J. Bacteriol. 193: 3686-3687.   DOI   ScienceOn
9 Fialho, A. M., L. M. Moreira, A. T. Granja, A. O. Popescu, K. Hoffmann, and I. Sa-Correia. 2008. Occurrence, production, and applications of gellan: Current state and perspectives. Appl. Microbiol. Biotechnol. 79: 889-900.   DOI   ScienceOn
10 Ghazi, S., J. A. Rooke, and H. Galbraith. 2003. Improvement of the nutritive value of soybean meal by protease and ${\alpha}$-galactosidase treatment in broiler cockerels and broiler chicks. Br. Poultry Sci. 44: 410-418.   DOI   ScienceOn
11 Graham, K. K., M. S. Kerley, J. D. Firman, and G. L. Allee. 2002. The effect of enzyme treatment of soybean meal on oligosaccharide disappearance and chick growth performance. Poultry Sci. 81: 1014-1019.
12 Gupta, R., Q. K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32.   DOI   ScienceOn
13 Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666.   DOI
14 Jaswal, S. S., J. L. Sohl, J. H. Davis, and D. A. Agard. 2002. Energetic landscape of ${\alpha}$-lytic protease optimizes longevity through kinetic stability. Nature 415: 343-346.   DOI   ScienceOn
15 Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.
16 Linden, J. C. 1982. Immobilized ${\alpha}$-D-galactosidase in the sugarbeet industry. Enzyme Microb. Technol. 4: 130-136.   DOI   ScienceOn
17 Liu, X. D., K. Meng, Y. R. Wang, P. J. Shi, T. Z. Yuan, P. L. Yang, et al. 2009. Gene cloning, expression and characterization of an ${\alpha}$-galactosidase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. World J. Microbiol. Biotechnol. 25: 1633-1642.   DOI   ScienceOn
18 Manning, M. and W. Colon. 2004. Structural basis of protein kinetic stability: Resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward ${\beta}$-sheet structure. Biochemistry 43: 11248-11254.   DOI   ScienceOn
19 Mi, S., K. Meng, Y. Wang, Y. Bai, T. Yuan, H. Luo, and B. Yao. 2007. Molecular cloning and characterization of a novel ${\alpha}$- galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme Microb. Technol. 40: 1373-1380.   DOI   ScienceOn
20 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
21 Miller, T. R., A. L. Delcher, S. L. Salzberg, E. Saunders, J. C. Detter, and R. U. Halden. 2010. Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J. Bacteriol. 192: 6101-6102.   DOI   ScienceOn
22 Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238.   DOI   ScienceOn
23 Baik, S. H., K. Saito, A. Yokota, K. Asano, and F. Tomita. 2000. Molecular cloning and high-level expression in Escherichia coli of fungal ${\alpha}$-galactosidase from Absidia corymbifera IFO 8084. J. Biosci. Bioeng. 90: 168-173.
24 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
25 Buja, L. M. 2009. Evaluation of recombinant ${\alpha}$-galactosidase A therapy for amelioration of the cardiovascular manifestations of Fabry disease: An important role for endomyocardial biopsy. Circulation 119: 2539-2541.   DOI   ScienceOn
26 Cao, Y., Y. Wang, H. Luo, P. Shi, K. Meng, Z. Zhou, et al. 2009. Molecular cloning and expression of a novel proteaseresistant GH-36 ${\alpha}$-galactosidase from Rhizopus sp. F78 ACCC 30795. J. Microbiol. Biotechnol. 19: 1295-1300.
27 Cao, Y., Y. Wang, K. Meng, Y. Bai, P. Shi, H. Luo, et al. 2009. A novel protease-resistant ${\alpha}$-galactosidase with high hydrolytic activity from Gibberella sp. F75: Gene cloning, expression, and enzymatic characterization. Appl. Microbiol. Biotechnol. 83: 875-884.   DOI   ScienceOn
28 Cao, Y. N., T. Z. Yuan, P. J. Shi, H. Y. Luo, N. Li, K. Meng, et al. 2010. Properties of a novel ${\alpha}$-galactosidase from Streptomyces sp. S27 and its potential for soybean processing. Enzyme Microb. Technol. 47: 305-312.   DOI   ScienceOn
29 Clarke, J. H., K. Davidson, J. E. Rixon, J. R. Halstead, M. P. Fransen, H. J. Gilbert, and G. P. Hazlewood. 2000. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and ${\alpha}$-galactosidase. Appl. Microbiol. Biotechnol. 53: 661-667.   DOI   ScienceOn
30 Clarke, E. J. and J. Wiseman. 2000. Developments in plant breeding for improved nutritional quality of soya beans II. Antinutritional factors. J. Agric. Sci. 134: 125-136.   DOI   ScienceOn
31 Dhawan, S. and J. Kaur. 2007. Microbial mannanases: An overview of production and applications. Crit. Rev. Biotechnol. 27: 197-216.   DOI   ScienceOn