• Title/Summary/Keyword: Spherical wavefront

Search Result 19, Processing Time 0.019 seconds

Changes in Spherical Aberration and Coma Aberration after Wearing Aspheric Soft Contact Lens in Young Myopes (젊은 성인 근시안에서 비구면 소프트 콘택트렌즈 착용 후 구면수차와 코마수차의 변화)

  • Lim, Dong-Kyu;Kwon, Hyeok;Lee, Koon-Ja
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.469-482
    • /
    • 2018
  • Purpose : We investigated the change of spherical and comma aberrations after wearing aspheric soft contact lens (ASCL) in young myopes. Methods : Fifty young myopes ($23.15{\pm}1.70years$, spherical equivalent: $-2.90{\pm}1.75D$) were recruited and refractive errors were corrected using ASCL (Biotrue, Bausch+Lomb, USA). High order aberrations were measured in the 4 mm pupil size using the wavefront analyze and pupil sizes were measured with a pupillometer at the modes of scotopic condition (light off) at 3.5 m in the 100 lx illuminance condition. Results : Spherical aberrations and coma aberration of the 20s myopes were $0.026{\pm}0.031{\mu}m$ and $0.078{\pm}0.039{\mu}m$ respectively, and $0.019{\pm}0.026{\mu}m$ and $0.082{\pm}0.038{\mu}m$ after ASCL wear that spherical aberration was decreased and coma aberration was increased. However, spherical aberration was decreased in the 68% of the subject have positive spherical aberration, and increased in the 11% of the subject have negative spherical aberration. Coma aberration was increased in the 53% of the subject, did not change in the 19% of the subjects, and decreased in the 28% of the subject. Spherical aberration was not different with the refractive errors in low and moderate myopies, however, coma aberrations was higher in the higher myopes. Conclusion : In a scotopic condition without accommodation stimuli, spherical aberration is decreased after wearing ASCL, however in the subject have negative spherical aberration spherical aberration could be increased, and which is thought to be the influence of contact lens design and pupil size.

According to the Wavelength, the Analysis of Individual Eye Model's Aberration Change (파장에 따른 개별모형안의 수차변화 분석)

  • Kim, Se-Jin;Lim, Hyeon-Seon;Kim, Bong-Hwan;Kouh, Jeong-Hwi
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.61-64
    • /
    • 2008
  • Purpose: The analysis of individual eye model designed from clinical demonstration about emmetropia shows that the aberration would be changed by the wave change. Method: The model on the basis of clinical demonstration of eye ball is designed in a form of having 4 refraction surfaces and a constant refractive index. We analyzed designed twelve individual eye model into aberrations changes, as giving changes Fraunhofer lines's six wavelengths. Result: About individual eye model, change in the wavelength of the wavefront aberrations analysis using the Zernike coefficient. This data indicate that the shorter wave is, the more defocus increases and the deviation value of spherical aberration and RMS are widened. Conclusion: As quantity of defocus according to result wavelength change is shorter and shorter, inclination which is similar twelve individual eye model is bigger and bigger and individual eye model majority of cases, little change, and change is shown in part individual eye model is a significant performance degradation can be raised.

  • PDF

A Study on a Hartmann Test of Optical Mirror for On-Machine Measurement of Polishing machine (광학면 연마기의 OMM을 위한 Hartmann Test 방법 연구)

  • 김옥현;이응석;오창진;김용관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2004
  • Recently, aspheric optical lenses and mirrors, which are harder to manufacture and measure than the conventional spherical ones, are widely used, particularly in electronic fabrication process. Generally, interferometric optical method is used for the measurement of spherical optical surface. However, the interferometric method for aspheric surface measurement is difficult because it needs a precise null corrector and strict environmental conditions such as constant temperature, humidity and vibrations. We have been studied on the manufacturing of aspheric optics to improve the surface profile accuracy and productivity using a corrective polishing process. For the corrective polishing, a practical method of On-Machine Measurement (OMM) is required. For this purpose, an optical OMM system has been studied using the Shach-Hartmann test, which is very robust to the practical polishing environment. The wavefront has been reconstructed from the measured data using the primary aberration polynomial function by the least squares fitting. The measured result of the OMM system shows that the maximum deviation is less than 200 nm for the one of commercial Fizeau interferometer Wyko 6000.

Volumetric Interferometry Using Spherical Wave Interference for Three-dimensional Coordinate Metrology

  • Rhee, Hyug-Gyo;Chu, Ji-Young;Kim, Seung-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.140-145
    • /
    • 2001
  • We present a new method of volumetric interferometer, which is intended to measure the three-dimensional coordinates of a moving object in a simultaneous way with a single optical setup. The method is based on the principles of phase-measuring interferometry with phase shifting. Two diffraction point sources, which are made of the polished ends of single-mode optical fibers are embedded on the object. Two spherical wavefronts emanate from the diffraction point sources and interfere with each other within the measurement volume. One wavefront is phase-shifted by elongating the corresponding fiber using a PZT extender. A CCD array sensor fixed at the stationary measurement station detects the resulting interference field. The measured phases are then related to the three-dimensional location of the object with a set of non-liner equations of Euclidean distance, from which the complete set of three-dimensional spatial coordinates of the object is determined through rigorous numerical computation based upon the least square error minimization.

Simulation of the Through-Focus Modulation Transfer Functions According to the Change of Spherical Aberration in Pseudophakic Eyes

  • Kim, Jae-hyung;Kim, Myoung Joon;Yoon, Geunyoung;Kim, Jae Yong;Tchah, Hungwon
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.403-408
    • /
    • 2015
  • To evaluate the effects of spherical aberration (SA) correction on optical quality in pseudophakic eyes, we simulated the optical quality of the human eye by computation of the modulation transfer function (MTF). We reviewed the medical records of patients who underwent cataract surgery in Asan Medical Center, retrospectively. A Zywave aberrometer was used to measure optical aberrations at 1-12 postoperative months in patients with AR40e intraocular lens implants. The MTF was calculated for a 5 mm pupil from measured wavefront aberrations. The area under the MTF curve (aMTF) was analyzed and the maximal aMTF was calculated while changing the SA ($-0.2{\sim}+0.2{\mu}m$) and the defocus (-2.0 ~ +2.0 D). Sixty-four eyes in 51 patients were examined. The maximal aMTF was $6.61{\pm}2.16$ at a defocus of $-0.25{\pm}0.66D$ with innate SA, and $7.64{\pm}2.63$ at a defocus of $0.08{\pm}0.53D$ when the SA was 0 (full correction of SA). With full SA correction, the aMTF increased in 47 eyes (73.4%; Group 1) and decreased in 17 eyes (26.6%; Group 2). There were statistically significant differences in Z(3, -1) (vertical coma; P = 0.01) and Z(4, 4) (tetrafoil; P = 0.04) between the groups. The maximal aMTF was obtained at an SA of $+0.01{\mu}m$ in Group 1 and an SA of $+0.13{\mu}m$ in Group 2. Optical quality can be improved by full correction of SA in most pseudophakic eyes. However, residual SA might provide benefits in eyes with significant radially asymmetric aberrations.

Change of Spherical Aberration with Aspheric Soft Contact Lens Wear (비구면 소프트콘택트렌즈 착용에 의한 눈의 구면수차 변화)

  • Kim, Jeong Mee;Mun, Mi-Young;Kim, Young Chul;Lee, Koon-Ja
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.365-372
    • /
    • 2012
  • Purpose: To investigate ocular higher order aberrations (HOA) and spherical aberration changes caused by an aspheric soft contact lens designed to reduce spherical aberration (SA) of the eye. Methods: Fifty subjects who have successfully experienced soft contact lenses were refitted with aspheric design (Soflens Daily Disposable: SDD, Bausch+Lomb) soft contact lens. Ocular higher order aberrations (HOA) and stand alone SA were measured and analyzed for a 4-mm pupil size using Wave-Scan Wavefront$^{TM}$ aberrometer (VISX, Santa Clara, CA, USA). High and low contrast log MAR visual acuity and contrast sensitivity function (CSF) were also measured under photopic and mesopic conditions (OPTEC 6500 Vision Tester$^{(R)}$). All measurements were conducted monocularly with an undilated pupil. Results: The RMS mean values for total HOA with SDD contact lenses were significantly lower than those at with unaided eyes (p<0.001) and a reduction for SA in the SDD was close to the baseline SA (zero ${\mu}m$) (p<0.001). For the SDD lens, there was a statistically significant correlation between the changes in the total HOA and the contact lens power (r=0.237, p=0.018) as well as between the changes in SA and the lens power (r=0.324, p=0.001). High contrast visual acuity (HCVA) and low contrast visual acuity (LCVA) with SDD lenses were $-0.063{\pm}0.062$ and $0.119{\pm}0.060$, respectively under photopic and $-0.003{\pm}0.063$ and $0.198{\pm}0.067$, respectively under mesopic condition. Contrast Sensitivity Function (CSF) with SDD lenses under both photopic and mesopic conditions was $3.095{\pm}0.068$ and $3.087{\pm}0.074$, respectively. Conclusions: The SDD contact lens designed to control SA reduced the total ocular HOA and SA of the eye, resulting in compensating for positive SA of the eyes. Thus, the optical benefits of the lens with SA control would be adopted for improving the quality of vision.

Corneal Asphericity and Optical Performance after Myopic Laser Refractive Surgery (굴절교정수술을 받은 근시안의 각막 비구면도와 광학적 특성 평가)

  • Kim, Jeong-Mee;Lee, A-Young;Lee, Koon-Ja
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.2
    • /
    • pp.179-186
    • /
    • 2013
  • Purpose: To compare corneal asphericity, visual acuity (VA), and ocular and corneal higher-order aberrations (HOAs) between myopic refractive surgery and emmetropia groups. Methods: Twenty three subjects ($23.0{\pm}2.5$ years) who underwent myopic refractive surgery and twenty emmetropia ($21.0{\pm}206$ years) were enrolled. The subjects'criteria were best unaided monocular VA of 20/20 or better in both two groups. High and low contrast log MAR visual acuities were measured under photopic and mesopic conditions. Corneal and ocular HOAs were measured using Wavefront Analyzer (KR-1W, Topcon) for 4 mm and 6 mm pupils. Corneal asphericity was taken by topography in KR-1W. Results: There was no significant difference in VA between two groups under either photopic or mesopic conditions. In ocular aberrations, there were significant differences in total HOAs, fourthorder and spherical aberration (SA) for a 6 mm between two groups (p=0.045, p<0.001, and p<0.001, respectively). In corneal aberrations, there was a significant difference in SA for 4 mm (p=0.001) and 6 mm (p<0.001) pupils between two groups and there were statistically significant differences in total HOAs (p<0.001) and fourth-order aberrations (p<0.001) between two groups for a 6 mm pupil. There was a significant correlation in emmetropia between Q-value and SA in ocular aberrations for 4 mm and 6 mm pupils (r=0.442, p=0.004, and r=0.519, p<0.001) and in corneal aberrations for 4 mm and 6 mm pupils (r=0.358, p=0.023, and r=0.646, p<0.001). No significant correlations were found between Q-value and SA in refractive surgery group. Conclusions: VA in myopic refractive surgery is better than or similar to emmetropia. Nevertheless, the more increasing pupil size is, the more increasing aberrations are. Thus, it could have an influence on the quality of vision at night.

A Study for the Limitation of Measurement Accuracy and Reliability of Autostigmatic Null lens System by Adjustment and Fixing Process (조정방식과 경통고정방식에 대한 자동무수차점 널 렌즈 광학계의 측정 정밀도 한계 및 신뢰도)

  • Lee, Young-Hun;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.440-445
    • /
    • 2005
  • The limitation of measurement accuracy and reliability of autostigmatic null lens system are studied for the cases of using inter-distance of null lenses as the adjustment factor of alignment and fixing the distance by mounting. If we investigate the first case, the wavefront aberration of null lens system is compensated by the adjustment process even though the shape of aspherical surface is not properly fabricated. As the result, it brings about the problem of measurement reliability. However, for the fixing process by mounting null lenses, it doesn't cause the reliability problem because the wavefront aberration of null lens system is not compensated. Further, the fixing process shows nearly same result in measurement accuracy to the adjustment process, that is, $0.0316{\lambda}$ vs. $0.0326{\lambda}$. So, we can conclude the setup for autostigmatic null lens system must be constituted by means of the fixing process. Meanwhile, we introduce and define the alignment aperture on aspheircal mirror, which can be approximated as spherical zone for alignment of null lens system, and besides, we calculate the required fabrication accuracy of the zone for the necessary measurement accuracy.

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor (샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가)

  • Hwang, Sung Lyoung;Lee, Jun Ho;Jeong, Do Hwan;Hong, Jin Suk;Kim, Young Soo;Kim, Yeon Soo;Kim, Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2017
  • We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.