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We present a new method of volumetric interferometer, which is intended to measure the three-
dimensional coordinates of a moving object in a simultaneous way with a single optical setup. The
method is based on the principles of phase-measuring interferometry with phase shifting. Two
diffraction point sources, which are made of the polished ends of single-mode optical fibers are
embedded on the object. Two spherical wavefronts emanate from the diffraction point sources
and interfere with each other within the measurement volume. One wavefront is phase-shifted
by elongating the corresponding fiber using a PZT extender. A CCD array sensor fixed at the
stationary measurement station detects the resulting interference field. The measured phases are
then related to the three-dimensional location of the object with a set of non-linear equations of
Euclidean distance, from which the complete set of three-dimensional spatial coordinates of the
object is determined through rigorous numerical computation based upon the least square error

minimization.
OCIS codes : 060.2380, 120.3180, 120.5050.

I. INTRODUCTION

Coordinate measuring machines (CMMs) for preci-
sion dimensional metrology have long been designed
with three orthogonal measurement axes equipped
with linear optical encoders or heterodyne laser in-
terferometers. This Cartesian coordinate approach of
the CMMs design suffers a significant loss of measure-
ment accuracy because of the so-called parallax er-
rors that are caused by large Abbe offsets between
the measurement axes and the probe [1]. The Abbe
offsets vary with the position of the probe within the
measurement volume and the angular motion errors
of slide ways change with the fluctuation in environ-
mental temperature. Due to these reasons, it is not
easy to completely eliminate the parallax errors by
adopting metrology frames and/or software compen-
sation technique that is based upon deterministic error
models. Furthermore, the recently established self-
calibration technique of using periodic grid artifacts
has limited effectiveness because it is at present feasi-
ble only for the two-dimensional calibration of planar
motion. Consequently, the volumetric uncertainty of
the orthogonal type CMMs is ultimately limited by
the geometrical imperfection of slide ways, of which

current level is in the range of a few micrometers at
best in a working volume of about half a cubic meter.

One attempt being made in recent years is the
so-called multi-lateration, which aims to reduce the
parallax errors by taking non-orthogonal parallel-
mechanism structures wherein measurement axes are
directly connected to the probe to minimize Abbe
offsets. This multi-lateration determines the three-
dimensional coordinates of the probe by solving in-
verse kinematics of the measured diagonal distances
of the probe from several fixed points. However,
there are many difficult practica problems that are en-
countered in fabricating CMMs of this sort, because
small geometrical defects existing in the sphere joints
of measurement axes usually surpass all the advan-
tages small Abbe offsets provided by adopting non-
orthogonal structural designs. Another approach of
multi-lateration for CMM applications is to measure
the diagonal distances of the probe by using track-
ing laser interferometers along with retro-reflectors.
Avoiding troublesome rotating joint mechanisms re-
quires wide view-angle retro-reflectors to send the
measuring laser beam exactly back to the incoming
direction regardless of the orientation of the reflector.
In this case, the measuring uncertainty of CMMs is
determined solely by the stability of the laser interfer-
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ometer system and machine structure, provided that
the geometrical errors of retro-reflectors may be ne-
glected [2], [3], [4].

Here in this paper, we present a new scheme of
multi-lateration using a volumetric interferometer sys-
tem that relies upon the principles of phase-shifting
phase-measuring interferometry in contrast with other
multi-lateration techniques that use multiple tracking
laser interferometers. The probe holds two diffraction
point sources, which are made of the polished ends of
single-mode optical fibers. Two spherical wavefronts
emanate from the diffraction point sources and they
interfere with each other within the working volume,
while one wavefront is phase-shifted by elongating the
corresponding fiber using a PZT extender. The result-
ing interference field is detected by a two-dimensional
CCD array of photo-detectors that are fixed at the
stationary measurement station. The phase informa-
tion captured by the photo-detectors is related to the
three-dimensional coordinates of the probe with a set
of non-linear equations of Euclidean distances, from
which the spatial coordinates of the probe are de-
termined by rigorous numerical computation of least
square error minimization. A prototype measurement
system is designed and tested to find out the level
of measurement precision within a working volume of
side 100 mm.

II. PRINCIPLES OF VOLUMETRIC
INTERFEROMETRY

When an optical fiber of single mode propagation
emits light into free space, it acts like a pinhole that
brings forth a spherical wavefront with its origin lo-
cated right at the core center of the fiber exit. The
effective core diameter of the single mode fiber is in
the range of 2 to 3 um, which is much smaller than
the size of conventional pinholes that are typically on
the order of 10 um, being limited by fabrication diffi-
culties. In addition, the phase distribution across the
cross section of the fiber end is intrinsically uniform
and the intensity distribution maintains the Gaussian
HE11 mode [5]. These superior characteristics of the
single mode fiber as a pinhole offer an almost perfect
spherical wavefront without the use of additional op-
tics such as condensing and collimating lenses [6].

Fig. 1 illustrates the basic geometric configuration
of the volumetric interferometer proposed in this in-
vestigation. It comprises two optical fibers of single
mode and a CCD sensor of two-dimensional photode-
tector array. The two fibers are aligned with their
ends side by side with an inter-axis distance of 125
mm and fixed on the object whose spatial position is
to be measured. The CCD sensor is secured stationary
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FIG. 1. Basic configuration for the volumetric interfer-
ometer.

on the machine frame. The xyz-measurement coordi-
nate system is set on the plane of the CCD sensor, and
the origins of the two spherical waves are expressed
with six unknown coordinates such as (zy,yy,2;) and
(z2,y2,22), respectively. The two spherical wavefronts
from the fibers interfere with each other and generate a
time-invariant intensity field across the measurement
volume. The primary task of the volumetric inter-
ferometer is to identify the six unknown coordinates
by detecting the intensity information of the interfer-
ence fringes formed on multiple discrete pixel points
of the CCD sensor. Once this is successfully done, the
identified six coordinates lead to the complete deter-
mination of the spatial position of the object holding
the fibers in six degrees of freedom, i.e., three trans-
lational plus three rotational motions.

The electric amplitudes of the wavefronts that reach
the CCD pixels from the two optical fibers, designated
fiber 1 and fiber 2 for distinction, are expressed as

éﬂe—j(kr11j+¢1)
b

Uy =
145

where
T = \/(271 —ixF)2+ (y1—JxFa)?+ 22 (1)

and
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A%j e~ I(kraij+d2)
i)

U2i5 =
7245

where

T2ij = \/(xz —ixF1)2 4+ (g2~ jx F2)2 4+ 25 (2)

The subscripts i and j index the individual locations
of the CCD pixels, and F} and F; are the spacing dis-
tances between the two adjacent pixels in the x and
in the y directions, respectively. In addition, T1:; and
72i; are the Euclidean radial distances from the fibers
to the CCD pixels, k is the wave number, and ¢; and
¢, are the initial phases measured right at the origins
of the two wavefronts. The intensity distribution of
the interference of the above two spherical wavefronts
on the CCD pixels is then worked out as

Iij = lulij + U2ill2 = Hij + FijCOS[(Dij], (3)

where
AL A% A Ay
L = 2 + 52, Ty = 2582022 @y = k(ryy; —

ij 2ij T1i5T 245
T2:5) + 64,00 = ¢y — 2.

The phase ®;; of the interference intensity I;; de-
pends on the distance difference between T1i; and 7945
and also on the initial phase difference between ¢,
and ¢3. The value of ®;; is measured by using the
phase-shifting method, which is implemented by elon-
gating one of the optical fibers using a tube type PZT
extender. In computing ®;;, we use the A-bucket al-
gorithm that is capable of compensating for the phase
shift errors that are inevitably encountered due to the
imprecision of fiber elongation (7).

The initial phase difference §¢ that is contained ;5
is unknown, but it remains constant for all the pixels.
So, ¢ is removed along with the wave number k by
defining the new variable A;; such as

®;; — oo
k

Ajy; represents the difference of the distances from the
pixel (i,j) to the origins of the optical fibers, where the
pixel (0,0) located at the center of the CCD array is
taken as the reference. Then the six unknowns of (z;,
y1, 21) and (z2, y2, 22) are determined so as to best
fit the model of Eq.(3) to the measured data of Aj;.
For this, the cost function to be minimized is defined
as.

Aij = = (r145 — T2i5) — (T100 — T200)- (4)

E = %y(A; — Ay) (5)

where ]\,j denotes the actual measured value of A,
and the summation of ¥;; is performed over all the
pixels. The cost function E turns out to be highly
nonlinear in terms of the unknowns of (1, y;, z1) and
(2, y2, z2). Thus the numerical technique is used to
search for the global minimum of the cost function,
from which the solutions of the unknowns are finally
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FIG. 2. Convergence of the numerical search for the
global minimum.

obtained. The numerical search for the global min-
imum requires two appropriate algorithms; one is
for determining the search direction in the multi-
dimensional space of the six unknowns and the other
is for determining the step size of the search. The
modified Newtons method based on the BFGS algo-
rithm is elected for the search direction, which offers
a relatively high computational speed when the num-
ber of unknowns is moderate [8}, [9]. The step size is
determined using the Amijo method [10] along with
the 3rd-order polynomial fitting [11].

Fig. 2 shows an exemplary result of the computer
simulation that was performed to verify the suitabil-
ity of the selected numerical search algorithms. For
simulation, the unknowns (z;, y1, z;) and (z2, Y2, 27)
were assumed to be located exactly at (0, 15, 200)
and (-0.125, 15, 200) with all the dimensions in mil-
limeters, and the phase ®;; was computed using the
interference intensity model of Eq.(3). Then, assum-
ing the computed values of ®;; as the measured data,
the true solutions of the unknowns were found out
with the search algorithms. The initial guesses for the
unknowns were varied with diverse offsets in the range
of 100 um from the true locations. As shown in the
figure, regardless of the initial guesses, the global mi-
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FIG. 3. Reduction of the total number of iterations.

nimum was always reached within about 130 itera-
tions. This type of simulation was repeated for dif-
ferent true locations of the unknowns, which confirms
the search algorithm yields a robust convergence. The
computation time is greatly affected by the initial
guesses of the unknowns, from which the numerical
search starts. The computation time can be reduced
by using the relationship between (z;, y1, #1) and
(z2, y2, 22), because they are not independent of each
other. A;; of Eq.(4) may be expanded from the origin
of the xyz-coordinates system such as

OA;; . OAy )
Aij = Aijli=0,5=0 + —afllzeo,j:ol + —‘éjj‘li=0,j=0]
92,
2 )i20.5=08] F +eue 6
+ 5i0; li=0,j=0%] + (6)
N T e

On the other hand, the measured f\ij may be fitted
into the Zernike polynomials such as

Aij = ZnanZ,(4,7) = ao + ot + azj + azij + ...
)

Comparing Eq.(7) with Eq.(6) permits (zz, y2, 22) to
be expressed in terms of (z;, y1, #1) such as

T1 U
T = re00(01 + ——), y2 = Ta00{Q2 + —),
7100

7100
— /2 2 2
22 = 4/T200 — 22 ~ Y2 (8)
where . Y
Toop = (aa+70g )(:azf ri0n)
203+ =424 :
s 100

Thus, the initial guesses for (z2,y2,27) are not made
arbitrary, but they are estimated from the initial
guesses of (x1,y1,21) along with the coefficients ao,
ai, ag, and a3 of the Zernike polynomials fitted from
the measured A;; as in Eq.(7). Fig 3. shows that the
total number of iterations in numerical search can be
reduced by using the relations of Eq.(8).

III. VOLUMETRIC INTERFEROMETER
CONSTRUCTION AND ERROR ANALYSIS

Figs. 4 and 5 show the overall hardware configu-
ration of the volumetric interferometer proposed in
this investigation. A beam frin a HeNe laser with
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FIG. 4. Optical configuration of the volumetric interfer-
ometer.
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FIG. 5. Experimental setup.
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FIG. 6. Verification of sphericity.

632.8 nm wavelength is fed to a single mode fiber
through an input coupler. Then the fiber is connected
to a 2x2 coupler that divides the input beam by 50:50
into two branches. Each branch fiber is wound around
a PZT extender that elongates the length of the fiber
to induce phase shift. At the ends of the fibers, two
spherical wavefronts are emitted to the CCD array.
About 4 % of the total emitting light is reflected from
the ends of the fibers, which is monitored by a pho-
todetector attached to an input end of the 2x2 coupler.
The reflected beams interfere with other, which pro-
vides the information on the difference of the initial
phases of the emitting fibers. The CCD camera has
a two-dimensional array of 640 x 480 photodetectors,
which has a spacing of 8.44 um in the x direction,
while 9.78 um in the y direction.

The pixels of the CCD array have a finite size of
rectangular shape. Thus, the sampled intensity from
a pixel is in fact an average, not the intensity value
precisely measured at the center of the pixel as is as-
sumed in the subsequent phase-measuring computa-
tion. However, thorough analysis reveals that the ef-
fect of the finite size of pixels on the measurement
error is negligible. On the other hand, the actual
sphericity of the interfering wavefronts significantly
affects the measurement error. The sphericity can be
verified as follows: Firstly, for a given relative geom-
etry between the CCD array and the emitting fibers,
the six coordinates of (z1, 1, z1) and (z2, Y2, 22)
are determined following the principles of volumet-
ric interferometry described in the previous section.
Secondly, using the determined six coordinates of the
fibers, two ideal spherical wavefronts are virtually gen-
erated by simulation, from which the ideal phase val-
ues for all the CCD pixels are subsequently computed.
Finally, the deviation between the actual measured
phases and the ideal simulated phases is evaluated.

As an example, Fig. 6 shows an experimental re-
sult when six coordinates are determined as (14917.3,
5873.1, 210302.5) and (14793.1, 5872.4, 210304.9) in
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FIG. 7. Measurement repeatability of the volumetric in-
terferometer.

micrometers. The deviation over the entire set of CCD
pixels is fitted to the Zernike polynomials, whose com-
puted coefficients are evaluated to be less than 1.5 x
105, This result is equivalent to a sphericity error of
7.63 nm in peak to valley and 0.61 nm in root-mean-
squares. This type of verification is repeated by vary-
ing the positions of the fibers within the measurable
volume. In our investigation, the maximum sphericity
error is found in the range of 10 nm in maximum. It
should be noted that the maximum sphericity error
has a contribution of the repeatability of the search
algorithms of determining the six coordinates of the
emitting fibers, so the actual maximum sphericity is
estimated better than the measured value.

The measurement repeatability of the volumetric in-
terferometer is evaluated through twenty consecutive
measurements. The measured phases of all the CCD
pixels are fitted to the Zernike polynomials, among
which the y-tilt component is found to be the dom-
inant contribution to the measurement repeatability.
Fig. 7 shown a plot of the y-tilt, which fluctuates with
a peak-to-valley value of 0.000163 A. The repeatabil-
ity measured in terms of the coordinates (1, y1, 21)
is (4.88, 5.03, 17.09) um in peak-to-valley.

IV. CONCLUSIONS

A new design concept of high precision CMM has
been presented by introducing a volumetric interfer-
ometer system that is capable of measuring the com-
plete spatial motion of the probe in six degrees of
freedom with no influences from the Abbe offsets and
angular motion errors of slide ways. The volumet-
ric interferometer operates on the principles of phase-
shifting phase-measuring interferometry, which com-
prises two optical fibers held on the probe emitting
two identical monochromatic spherical wavefronts and
a CCD photodetector array monitoring the interfer-
ence intensity of the two spherical wavefronts. The
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xyz-coordinates of each fiber end are then determined
so as to minimize the least square errors of the ac-
tual phase values computed from the intensity distri-
bution sampled by the photodetector array. The pro-
totype measurement system built in this investigation
demonstrates that the measurement repeatability is in
the level of 30 nm and the one-dimensional uncertainty
is about 0.2 pm in a working distance of 150 mm. This
concept of new design allows the CMM measurement
to be free from Abbe offsets and angular motion errors
in machine axes.
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