Change of Spherical Aberration with Aspheric Soft Contact Lens Wear

비구면 소프트콘택트렌즈 착용에 의한 눈의 구면수차 변화

  • Kim, Jeong Mee (Graduate School Dept. of Optometry, Eulji University) ;
  • Mun, Mi-Young (Graduate School of Public Health Science, Eulji University) ;
  • Kim, Young Chul (Dept. of Optometry, Eulji University) ;
  • Lee, Koon-Ja (Graduate School Dept. of Optometry, Eulji University)
  • 김정미 (을지대학교 대학원 안경광학과) ;
  • 문미영 (을지대학교 대학원 보건학과) ;
  • 김영철 (을지대학교 안경광학과) ;
  • 이군자 (을지대학교 대학원 안경광학과)
  • Received : 2012.10.31
  • Accepted : 2012.12.15
  • Published : 2012.12.31

Abstract

Purpose: To investigate ocular higher order aberrations (HOA) and spherical aberration changes caused by an aspheric soft contact lens designed to reduce spherical aberration (SA) of the eye. Methods: Fifty subjects who have successfully experienced soft contact lenses were refitted with aspheric design (Soflens Daily Disposable: SDD, Bausch+Lomb) soft contact lens. Ocular higher order aberrations (HOA) and stand alone SA were measured and analyzed for a 4-mm pupil size using Wave-Scan Wavefront$^{TM}$ aberrometer (VISX, Santa Clara, CA, USA). High and low contrast log MAR visual acuity and contrast sensitivity function (CSF) were also measured under photopic and mesopic conditions (OPTEC 6500 Vision Tester$^{(R)}$). All measurements were conducted monocularly with an undilated pupil. Results: The RMS mean values for total HOA with SDD contact lenses were significantly lower than those at with unaided eyes (p<0.001) and a reduction for SA in the SDD was close to the baseline SA (zero ${\mu}m$) (p<0.001). For the SDD lens, there was a statistically significant correlation between the changes in the total HOA and the contact lens power (r=0.237, p=0.018) as well as between the changes in SA and the lens power (r=0.324, p=0.001). High contrast visual acuity (HCVA) and low contrast visual acuity (LCVA) with SDD lenses were $-0.063{\pm}0.062$ and $0.119{\pm}0.060$, respectively under photopic and $-0.003{\pm}0.063$ and $0.198{\pm}0.067$, respectively under mesopic condition. Contrast Sensitivity Function (CSF) with SDD lenses under both photopic and mesopic conditions was $3.095{\pm}0.068$ and $3.087{\pm}0.074$, respectively. Conclusions: The SDD contact lens designed to control SA reduced the total ocular HOA and SA of the eye, resulting in compensating for positive SA of the eyes. Thus, the optical benefits of the lens with SA control would be adopted for improving the quality of vision.

목적: 구면수차를 감소시키기 위해 설계된 비구면 소프트콘택트렌즈를 착용시킨 후 눈에서 변화된 고위수차와 구면수차를 분석하였다. 방법: 50명의 소프트 콘택트렌즈 착용자가 연구에 참여하였으며 SDD(Soflens Daily Disposable, Bausch+Lomb) 비구면 렌즈를 착용시킨 후 Wave-Scan Wavefront$^{TM}$ aberrometer (VISX, Santa Clara, CA, USA)를 이용하여 눈 전체의 고위수차와 구면수차를 4 mm의 동공크기를 기준으로 측정하였고, 구면수차 변화량은 착용한 비구면 렌즈의 약도, 중도, 고도의 도수에 따라 비교, 분석하였다. 밝은 조명(photopic)과 어두운(mesopic) 조명상태에서 대비도를 가지는 시력표(100%와 20%)를 이용하여 시력 검사를 하였고 OPTEC 6500 Vision Tester$^{(R)}$(Stereo Optical Co., Inc., Chicago, USA)를 사용하여 밝은 조명(photopic)과 어두운(mesopic)조명 상태의 대비감도를 각각 측정하였다. 모든 측정은 산동 시키지 않은 상태에서 단안으로 시행하였다. 결과: SDD 비구면 렌즈를 착용한 경우 눈의 전체고위수차는 나안 상태보다 유의하게 감소하였고(p<0.001), 구면수차는 상당히 감소하여 0에 근접하는 경향을 보였다(p<0.001). SDD 렌즈 도수에 따라 전체고위수차 변화량(r= 0.237, p=0.018)과 구면수차 변화량(r=0.324, p=0.001)은 유의한 상관관계가 나타났다. 밝은 조명상태에서 100% 및 20% 대비도 시력은 각각 $-0.063{\pm}0.062$$0.119{\pm}0.060$으로 나타났고, 어두운 조명상태에서 100% 및 20% 대비도 시력은 $-0.003{\pm}0.063$$0.198{\pm}0.067$으로 측정되었다. 밝은 조명상태와 어두운 조명상태에서 대비감도는 각각 $3.095{\pm}0.068$$3.087{\pm}0.074$로 나타났다. 결론: 구면수차를 제어한 비구면 디자인의 소프렌 소프트렌즈(SDD)는 눈의 전체 고위수차와 구면수차를 감소시키고 눈의 구면수차를 보정하면서 시력의 질을 향상시킬 수 있을 것으로 사료된다.

Keywords

References

  1. Cheng X, Himebaugh NL, Kollbaum PS, Thibos LN, Bradley A. Validation of a clinical Shack-Hartmann aberrometer. Optom Vis Sci. 2003;80(8):587-595. https://doi.org/10.1097/00006324-200308000-00013
  2. Salmon TO, van de Pol C. Evaluation of a clinical aberrometer for lower-order accuracy and repeatability, higherorder repeatability, and instrument myopia. Optometry. 2005;76(8):461-472. https://doi.org/10.1016/j.optm.2005.07.006
  3. Thibos LN. The prospects for perfect vision. J Refract Surg. 2000;16(5):S540-546.
  4. Williams D, Yoon GY, Porter J, Guirao A, Hofer H, Cox I. Visual benefit of correcting higher order aberrations of the eye. J Refract Surg. 2000;16(5):S554-559.
  5. Yoon GY, Williams DR. Visual performance after correcting the monochromatic and chromatic aberrations of the eye. J Opt Soc Am A Opt Image Sci Vis. 2002;19(2):266- 275. https://doi.org/10.1364/JOSAA.19.000266
  6. Vaz TC, Gundel RE. High- and low-contrast visual acuity measurements in spherical and aspheric soft contact lens wearers. Cont Lens Anterior Eye. 2003;26(3):147-151. https://doi.org/10.1016/S1367-0484(03)00025-0
  7. Lopez-Gil N, Castejon-Mochon JF, Benito A, Marin JM, Lo-a-Foe G, Marin G, et al. Aberration generation by contact lenses with aspheric and asymmetric surfaces. J Refract Surg. 2002;18(5):S603-609.
  8. Dietze HH, Cox MJ. Correcting ocular spherical aberration with soft contact lenses. J Opt Soc Am A Opt Image Sci Vis. 2004;21(4):473-485. https://doi.org/10.1364/JOSAA.21.000473
  9. Atchison DA, Scott DH, Cox MJ. Mathematical treatment of ocular aberrations: a user's guide, in vision science and its applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in optics and photonics series. Optical Society of America. 2000:110-130.
  10. Artal P, Berrio E, Guirao A, Piers P. Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J Opt Soc Am A Opt Image Sci Vis. 2002;19(1):137-143. https://doi.org/10.1364/JOSAA.19.000137
  11. Bausch & Lomb product information soflens daily disposable. BL 73457 SE. 2006.
  12. Mannos JL, Sakrison DJ. The effects of visual fidelity criterion on the encoding of images. IEEE Transactions on Information Theory. 1974;20(4):525-536. https://doi.org/10.1109/TIT.1974.1055250
  13. Solomon KD, Fernández de Castro LE, Sandoval HP, Vroman DT. Comparison of wavefront sensing devices. Ophthalmol Clin North Am. 2004;17(2):119-127. https://doi.org/10.1016/j.ohc.2004.02.003
  14. He JC, Burns SA, Marcos S. Monochromatic aberrations in the accommodated human eye. Vision Res. 2000; 40(1):41-48. https://doi.org/10.1016/S0042-6989(99)00156-X
  15. Dietze HH, Cox MJ. On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power. Optom Vis Sci. 2003;80(2):126-134. https://doi.org/10.1097/00006324-200302000-00008
  16. Efron S, Efron N, Morgan PB. Optical and visual performance of aspheric soft contact lenses. Optom Vis Sci. 2008;85(3):201-210. https://doi.org/10.1097/OPX.0b013e318165100a
  17. Lindskoog Pettersson A, Jarkö C, Alvin A, Unsbo P, Brautaset R. Spherical aberration in contact lens wear. Contact Lens Anterior Eye. 2008;31(4):189-193. https://doi.org/10.1016/j.clae.2008.05.005
  18. Kim SJ, Lim HS, Kim BH, Kouh JH. According to the wavelength, the analysis of individual eye model`s aberration change. J Korean Oph Opt Soc. 2008;13(3):61-64.
  19. Hong SH, Park SB, Jeon SW, Kim DP, Lee NS, Kim JS, et al. Analysis of corneal topographic patterns and aberration in normal college students. Korean J Vis Sci. 2008; 10(4):303-316.
  20. Lee HJ, Jung SJ, Song YY, Baek SS. Correlations of corneal anterior and posterior refractive power, spherical aberration and asphericity. Korean J Vis Sci. 2009;11(4):259- 268.
  21. He JC, Sun P, Held R, Thorn F, Sun X, Gwiazda JE. Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults. Vision Res. 2002;42(8):1063-1070. https://doi.org/10.1016/S0042-6989(02)00035-4
  22. Lu F, Mao X, Qu J, Xu D, He JC. Monochromatic wavefront aberrations in the human eye with contact lenses. Optom Vis Sci. 2003;80(2):135-141. https://doi.org/10.1097/00006324-200302000-00009
  23. Liang J, Williams DR. Aberrations and retinal image quality of the normal human eye. J Opt Soc Am A Image Sci Vis. 1997;14(11):2873-2883. https://doi.org/10.1364/JOSAA.14.002873
  24. Marcos S, Moreno-Barriuso E, Llorente L, Navarro R, Barbero S. Do myopic eyes suffer from larger amount of aberrations?. In: Thorn F, Troilo D, Gwiazda J, eds. Myopia 2000: Proceedings of the 8th international conference on myopia. Boston: The New England College of Optometry, 2000:118-121.
  25. Cheng X, Bradley A, Hong X, Thibos LN. Relationship between refractive error and monochromatic aberrations of the eye. Optom Vis Sci. 2003;80(1):43-49. https://doi.org/10.1097/00006324-200301000-00007
  26. Porter J, Guirao A, Cox IG, Williams DR. Monochromatic aberrations of the human eye in a large population. J Opt Soc Am A Opt Image Sci Vis. 2001;18(8):1793-1803. https://doi.org/10.1364/JOSAA.18.001793
  27. Thibos LN, Bradley A, Hong X. A statistical model of the aberration structure of normal, well-corrected eyes. Ophthalmic Physiol Opt. 2002;22(5):427-433. https://doi.org/10.1046/j.1475-1313.2002.00059.x
  28. Nguyen-Khoa JL, Gicquel JJ, Lebuisson DA, Dighiero P, Maille M. Monochromatic ocular aberrations distribution in professional pilots. Invest Ophthalmol Vis Sci. 2005; 46:E-Abstract 1998.
  29. Charman WN, Chateau N. The prospects for super-acuity: limits to visual performance after correction of monochromatic ocular aberration. Ophthalmic Physiol Opt. 2003; 23(6):479-493. https://doi.org/10.1046/j.1475-1313.2003.00132.x
  30. De Brabander J, Chateau N, Bouchard F, Guidollet S. Contrast sensitivity with soft contact lenses compensated for spherical aberration in high ametropia. Optom Vis Sci. 1998;75(1):37-43. https://doi.org/10.1097/00006324-199801000-00023
  31. Applegate RA. Glenn fry award lecture 2002: wavefront sensing, ideal corrections, and visual performance. Optom Vis Sci. 2004;81(3):167-177. https://doi.org/10.1097/00006324-200403000-00008
  32. Applegate RA, Ballentine C, Gross H, Sarver EJ, Sarver CA. Visual acuity as a function of zernike mode and level of root mean square error. Optom Vis Sci. 2003;80(2):97- 105. https://doi.org/10.1097/00006324-200302000-00005
  33. Hong X, Himebaugh N, Thibos LN. On-eye evaluation of optical performance of rigid and soft contact lenses. Optom Vis Sci. 2001;78(12):872-880. https://doi.org/10.1097/00006324-200112000-00009
  34. Kim CJ, Kim HJ, Kim JM. Comparison of contrast sensitivity at near between functional progressive addition lenses and sigle vision lenses. J Korean Oph Opt Soc. 2010;15(4):381-388.
  35. Seo JM. Analysis of the visual function in low vision patients and normals in Canada, using contrast sensitivity. J Korean Oph Opt Soc. 2009;14(3):83-88.
  36. Cox I, Holden BA. Soft contact lens-induced longitudinal spherical aberration and its effect on contrast sensitivity. Optom Vis Sci. 1990;67(9):679-683. https://doi.org/10.1097/00006324-199009000-00004
  37. Rae SM, Allen PM, Radhakrishnan H, Theagarayan B, Price HC, Sailaganathan A, Calver RI, O'Leary DJ. Increasing negative spherical aberration with soft contact lenses improves high and low contrast visual acuity in young adults. Ophthalmic Physiol Opt. 2009;29(6):593- 601. https://doi.org/10.1111/j.1475-1313.2009.00678.x
  38. Legras R, Chateau N, Charman WN. Assessment of justnoticeable differences for refractive errors and spherical aberration using visual simulation. Optom Vis Sci. 2004; 81(9):718-728. https://doi.org/10.1097/01.opx.0000144751.11213.cd
  39. Tanabe T, Miyata K, Samejima T, Hirohara Y, Mihashi T, Oshika T. Influence of wavefront aberration and corneal subepithelial haze on low-contrast visual acuity after photorefractive keratectomy. Am J Ophthalmol. 2004;138(4):620-624. https://doi.org/10.1016/j.ajo.2004.06.015
  40. Yamane N, Miyata K, Samejima T, Hiraoka T, Kiuchi T, Okamoto F, Hirohara Y, Mihashi T, Oshika T. Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2004;45(11):3986-3990. https://doi.org/10.1167/iovs.04-0629
  41. Pesudovs K, Marsack JD, Donnelly WJ 3rd, Thibos LN, Applegate RA. Measuring visual acuity-mesopic or photopic conditions, and high or low contrast letters?. J Refract Surg. 2004;20(5):S508-514.
  42. Perez-Carrasco MJ, Puell MC, Sanchez-Ramos C, Lopez- Castro A, Langa A. Effect of a yellow filter on contrast sensitivity and disability glare after laser in situ keratomileusis under mesopic and photopic conditions. J Refract Surg. 2005;21(2):158-165.
  43. Hiraoka T, Okamoto C, Ishii Y, Takahira T, Kakita T, Oshika T. Mesopic contrast sensitivity and ocular higherorder aberrations after overnight orthokeratology. Am J Ophthalmol. 2008;145(4): 645-655. https://doi.org/10.1016/j.ajo.2007.11.021